You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2019-07-23 05:44:00 UTC
Secondary Accession Numbers
  • HMDB00256
Metabolite Identification
Common NameSqualene
DescriptionSqualene is a natural raw material found in human sebum (5%) and in shark-liver oil. An unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds. (Hawley's Condensed Chemical Reference) Biological Source: Found in fish liver oils, yeast lipids and many vegetable oils, e.g. palm oil, cottonseed oil, rapeseed oil. Volatile component of scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey). Component of adult human sebum principally responsible for the fixing of fingerprints (ChemNetBase) Squalene is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. -- Wikipedia; Squalene is the biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. -- Wikipedia; Squalene is a low density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the shark's liver, is lighter than water with a specific gravity of 0.855. -- Wikipedia Uses: Bactericide. Intermediate in the manufacture of pharmaceuticals, rubber chemicals and coloring materials (Physical Constants of Chemical Substances).
Nikko squalane exHMDB
Chemical FormulaC30H50
Average Molecular Weight410.718
Monoisotopic Molecular Weight410.3912516
IUPAC Name(6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
Traditional Name(6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
CAS Registry Number111-02-4
InChI Identifier
Chemical Taxonomy
Description belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTriterpenoids
Direct ParentTriterpenoids
Alternative Parents
  • Triterpenoid
  • Branched unsaturated hydrocarbon
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Acyclic olefin
  • Hydrocarbon
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors

Route of exposure:


Biological location:


Naturally occurring process:


Industrial application:

Biological role:

Physical Properties
Experimental Properties
Melting Point-75 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility0.0005 g/LALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count15ChemAxon
Refractivity144.62 m³·mol⁻¹ChemAxon
Polarizability55.9 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-05y1-4879000000-643c1d087f1a2f3e2e16JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-047r-1944600000-5faa7a5eb4804dfad261JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-4867900000-dcd3ba4f6ee550dc565bJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-2944400000-8be7743f6b07ba138c24JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0323900000-5bedc30817d5c5d01efbJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0cdl-4984100000-300a277b16ec703823d5JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0aou-7596000000-05f1c221b7c0392d38d0JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0000900000-b358bb76b170bbf30138JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0000900000-263e0536e44752c47006JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-052f-1879100000-92ff711655668bba23d8JSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableJSpectraViewer
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Biospecimen Locations
  • Blood
  • Feces
  • Sweat
Tissue Locations
  • Chylomicrons
  • Fibroblasts
  • Liver
  • Skin
  • Stratum Corneum
  • Testes
Normal Concentrations
BloodDetected and Quantified2.22 +/- 0.063 uMAdult (>18 years old)Female
BloodDetected and Quantified1.58 +/- 0.063 uMAdult (>18 years old)FemaleNormal details
FecesDetected but not Quantified Adult (>18 years old)Both
SweatDetected but not Quantified Adult BothNormal details
Abnormal Concentrations
FecesDetected but not Quantified Adult (>18 years old)BothColorectal Cancer details
FecesDetected but not Quantified Adult (>18 years old)BothColorectal Cancer details
FecesDetected but not Quantified Adult (>18 years old)Both
Colorectal cancer
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  2. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB015781
KNApSAcK IDC00003755
Chemspider ID10148626
KEGG Compound IDC00751
BioCyc IDNot Available
BiGG ID35878
Wikipedia LinkSqualene
PubChem Compound11975273
PDB IDNot Available
ChEBI ID15440
Synthesis ReferencePeng, Wanxi; Li, Kaifu. Method of preparation of squalene. Faming Zhuanli Shenqing Gongkai Shuomingshu (2006), 9pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Strauss JS, Stranieri AM, Farrell LN, Downing DT: The effect of marked inhibition of sebum production with 13cis-retinoic acid on skin surface lipid composition. J Invest Dermatol. 1980 Feb;74(2):66-7. [PubMed:6444323 ]
  2. Grimes DS, Hindle E, Dyer T: Sunlight, cholesterol and coronary heart disease. QJM. 1996 Aug;89(8):579-89. [PubMed:8935479 ]
  3. Relas H, Gylling H, Miettinen TA: Dietary squalene increases cholesterol synthesis measured with serum non-cholesterol sterols after a single oral dose in humans. Atherosclerosis. 2000 Oct;152(2):377-83. [PubMed:10998465 ]
  4. Nikkila K, Hockerstedt K, Miettinen TA: Serum and hepatic cholestanol, squalene and noncholesterol sterols in man: a study on liver transplantation. Hepatology. 1992 May;15(5):863-70. [PubMed:1568728 ]
  5. Gylling H, Relas H, Miettinen HE, Radhakrishnan R, Miettinen TA: Delayed postprandial retinyl palmitate and squalene removal in a patient heterozygous for apolipoprotein A-IFIN mutation (Leu 159-->Arg) and low HDL cholesterol level without coronary artery disease. Atherosclerosis. 1996 Dec 20;127(2):239-43. [PubMed:9125314 ]
  6. Rajaratnam RA, Gylling H, Miettinen TA: Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women. J Am Coll Cardiol. 2000 Apr;35(5):1185-91. [PubMed:10758959 ]
  7. Rajaratnam RA, Gylling H, Miettinen TA: Serum squalene in postmenopausal women without and with coronary artery disease. Atherosclerosis. 1999 Sep;146(1):61-4. [PubMed:10487487 ]
  8. Thiele JJ, Weber SU, Packer L: Sebaceous gland secretion is a major physiologic route of vitamin E delivery to skin. J Invest Dermatol. 1999 Dec;113(6):1006-10. [PubMed:10594744 ]
  9. Relas H, Gylling H, Miettinen TA: Effect of stanol ester on postabsorptive squalene and retinyl palmitate. Metabolism. 2000 Apr;49(4):473-8. [PubMed:10778871 ]
  10. Gylling H, Vuoristo M, Farkkila M, Miettinen TA: The metabolism of cholestanol in primary biliary cirrhosis. J Hepatol. 1996 Apr;24(4):444-51. [PubMed:8738731 ]
  11. Chiba K, Yoshizawa K, Makino I, Kawakami K, Onoue M: Changes in the levels of glutathione after cellular and cutaneous damage induced by squalene monohydroperoxide. J Biochem Mol Toxicol. 2001;15(3):150-8. [PubMed:11424225 ]
  12. Nosaka Y, Yamanishi Y, Hirayama C: Biliary squalene levels in hepatobiliary disease. Gastroenterol Jpn. 1985 Aug;20(4):338-43. [PubMed:4054510 ]
  13. Kohno Y, Egawa Y, Itoh S, Nagaoka S, Takahashi M, Mukai K: Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta. 1995 Apr 28;1256(1):52-6. [PubMed:7742356 ]


General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the first oxygenation step in sterol biosynthesis and is suggested to be one of the rate-limiting enzymes in this pathway.
Gene Name:
Uniprot ID:
Molecular weight:
Squalene + NADPH + Oxygen → (3S)-2,3-epoxy-2,3-dihydrosqualene + NADP + Waterdetails
Squalene + Reduced acceptor + Oxygen → (3S)-2,3-epoxy-2,3-dihydrosqualene + Acceptor + Waterdetails
Squalene + Oxygen + NADPH + Hydrogen Ion → (3S)-2,3-epoxy-2,3-dihydrosqualene + NADP + Waterdetails
General function:
Involved in transferase activity
Specific function:
Not Available
Gene Name:
Uniprot ID:
Molecular weight:
Farnesyl pyrophosphate + NAD(P)H → Squalene + Pyrophosphate + NAD(P)(+)details
Presqualene diphosphate + NADPH + Hydrogen Ion → Pyrophosphate + Squalene + NADPdetails
Farnesyl pyrophosphate + NADPH + Hydrogen Ion → Squalene + Pyrophosphate + NADPdetails
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transporter activity
Specific function:
Probable hydrophobic ligand-binding protein; may play a role in the transport of hydrophobic ligands like tocopherol, squalene and phospholipids
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transporter activity
Specific function:
Probable hydrophobic ligand-binding protein; may play a role in the transport of hydrophobic ligands like tocopherol, squalene and phospholipids
Gene Name:
Uniprot ID:
Molecular weight: