You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2019-07-23 05:44:00 UTC
HMDB IDHMDB0000263
Secondary Accession Numbers
  • HMDB00263
Metabolite Identification
Common NamePhosphoenolpyruvic acid
DescriptionPhosphoenolpyruvate (PEP) is an important chemical compound in biochemistry. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia).
Structure
Data?1563860640
Synonyms
ValueSource
2-(Phosphonooxy)-2-propenoic acidChEBI
2-PHOSPHOENOLPYRUVIC ACIDChEBI
PEPChEBI
PHOSPHOENOLPYRUVATEChEBI
2-(Phosphonooxy)-2-propenoateGenerator
2-PHOSPHOENOLPYRUVateGenerator
2-Hydroxy-acrylic acid dihydrogen phosphateHMDB
2-Phosphonooxyprop-2-enoateHMDB
2-Phosphonooxyprop-2-enoic acidHMDB
p-enol-PyruvateHMDB
Chemical FormulaC3H5O6P
Average Molecular Weight168.042
Monoisotopic Molecular Weight167.982374404
IUPAC Name2-(phosphonooxy)prop-2-enoic acid
Traditional Namephosphoenolpyruvic acid
CAS Registry Number138-08-9
SMILES
OC(=O)C(=C)OP(O)(O)=O
InChI Identifier
InChI=1S/C3H5O6P/c1-2(3(4)5)9-10(6,7)8/h1H2,(H,4,5)(H2,6,7,8)
InChI KeyDTBNBXWJWCWCIK-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as phosphate esters. These are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassOrganic phosphoric acids and derivatives
Sub ClassPhosphate esters
Direct ParentPhosphate esters
Alternative Parents
Substituents
  • Phosphoric acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Role

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility13.2 g/LALOGPS
logP-1.2ALOGPS
logP-0.64ChemAxon
logS-1.1ALOGPS
pKa (Strongest Acidic)0.76ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area104.06 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity30.13 m³·mol⁻¹ChemAxon
Polarizability11.57 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0292-0962000000-44d3914b4e07e5c50e3fJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0292-0962000000-44d3914b4e07e5c50e3fJSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0002-9200000000-ae9d81fc88a98f678268JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-00di-9410000000-072478606f0ab6809902JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0udr-1900000000-9a4f5554af9a717d99c7JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000x-9200000000-6cdc15f3daa25fc41655JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-001i-9100000000-39e22409d6d924a774f1JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00xu-0912000000-ad1823470675975d5ff0JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-1f5b761ce5fa374b0f8eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-d279f0ca2accb130181fJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0920000000-f084dccf78e11c8760d7JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00lr-0911000000-7fa833698210746c838fJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-62e28301f20b08971b78JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-25f970898112f7b89898JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0930000000-58691b23d317c2418c33JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-00p0-0493110000-9d61bb13ab5261fdf9fdJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-9100000000-db409b3cfa9ebabbcb58JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4j-5090000000-1ee56bc4866301d4bf2eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4i-0090000000-bce08b01d44391bfecadJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-016r-7900000000-ffd3b8dcd65aaea26ac3JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-9000000000-ceae3587b1e7d8b3da27JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-9000000000-701a17330cd18255d625JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-004i-9000000000-a4178ce4951e2c3dba7bJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-004i-9000000000-9d0421620a7aaa9ef33fJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0k9i-1900000000-fb12ade375a7ac97f150JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-0f76-8900000000-7f57e6a8e72e5992cd88JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-000j-9300000000-c02bca019150d572b3bcJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-05bf-9200000000-73fa5ca52ecc17bac380JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0079-9300000000-231346190165f44f28dcJSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableJSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondria
Biospecimen Locations
  • Blood
  • Cellular Cytoplasm
  • Saliva
Tissue Locations
  • Prostate
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified7.6 +/- 2.9 uMNewborn (0-30 days old)BothNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified17.4 +/- 3.8 uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Cellular CytoplasmDetected and Quantified17.0 (15.0-19.0) uMAdult (>18 years old)BothNormal details
SalivaDetected and Quantified2.07 +/- 1.22 uMAdult (>18 years old)FemaleNormal details
SalivaDetected and Quantified0.219 +/- 0.312 uMAdult (>18 years old)Male
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.312 +/- 0.332 uMAdult (>18 years old)Not Specified
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.419 +/- 0.270 uMAdult (>18 years old)Not Specified
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.463 +/- 0.275 uMAdult (>18 years old)Female
Normal
    • Sugimoto et al. (...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
SalivaDetected and Quantified1.94 +/- 1.62 uMAdult (>18 years old)MaleAlzheimer's disease details
SalivaDetected and Quantified2.45 +/- 3.70 uMAdult (>18 years old)MaleFrontotemporal lobe dementia details
SalivaDetected and Quantified2.36 +/- 3.13 uMAdult (>18 years old)BothLewy body disease details
Associated Disorders and Diseases
Disease References
Alzheimer's disease
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Frontotemporal dementia
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Lewy body disease
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Associated OMIM IDs
DrugBank IDDB01819
Phenol Explorer Compound IDNot Available
FoodDB IDFDB001451
KNApSAcK IDC00000798
Chemspider ID980
KEGG Compound IDC00074
BioCyc IDNot Available
BiGG ID33756
Wikipedia LinkPhosphoenolpyruvic_acid
METLIN ID5264
PubChem Compound1005
PDB IDNot Available
ChEBI ID44897
References
Synthesis ReferenceSimon, Ethan S.; Grabowski, Sven; Whitesides, George M. Preparation of phosphoenolpyruvate from D-(-)-3-phosphoglyceric acid for use in regeneration of ATP. Journal of the American Chemical Society (1989), 111(24), 8920-1.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Krogh P: Role of ochratoxin in disease causation. Food Chem Toxicol. 1992 Mar;30(3):213-24. [PubMed:1618445 ]
  2. Germaine GR, Tellefson LM: Promotion of Streptococcus mutans glucose transport by human whole saliva and parotid fluid. Infect Immun. 1985 Apr;48(1):7-13. [PubMed:3980096 ]
  3. Schatzberger P: Maternity services. BMJ. 1992 May 23;304(6838):1382-3. [PubMed:1611358 ]
  4. Orye E, Verhaaren H, Samuel K, van Mele B: A 46,XX,10Q+ chromosome constitution in a girl. Partial long arm duplication or insertional translocation? Humangenetik. 1975 May 26;28(1):1-8. [PubMed:1150258 ]
  5. Landau BR, Chandramouli V, Schumann WC, Ekberg K, Kumaran K, Kalhan SC, Wahren J: Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients. Diabetologia. 1995 Jul;38(7):831-8. [PubMed:7556986 ]
  6. Shirokane Y, Nakajima M, Mizusawa K: A new enzymatic assay of urinary guanidinoacetic acid. Clin Chim Acta. 1991 Oct 31;202(3):227-36. [PubMed:1667626 ]
  7. Tannen RL: Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265-77. [PubMed:29492 ]
  8. Atkin BM, Buist NR, Utter MF, Leiter AB, Banker BQ: Pyruvate carboxylase deficiency and lactic acidosis in a retarded child without Leigh's disease. Pediatr Res. 1979 Feb;13(2):109-16. [PubMed:219411 ]
  9. Bojarska-Dahlig H, Gloabski T, Dzioegielewska I: [Salts of cyclic erythromycin A carbonate with cinnamic acid derivatives]. Acta Pol Pharm. 1975;32(3):311-7. [PubMed:1155186 ]
  10. Matsumoto T, van der Auwera P, Watanabe Y, Tanaka M, Ogata N, Naito S, Kumazawa J: Neutrophil function in hyperosmotic NaCl is preserved by phosphoenol pyruvate. Urol Res. 1991;19(4):223-7. [PubMed:1656579 ]
  11. Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2:18. [PubMed:15882454 ]
  12. Cahill GF Jr, Aoki TT: Renal gluconeogenesis and amino-acid metabolism in man. Med Clin North Am. 1975 May;59(3):751-61. [PubMed:1092934 ]
  13. Beyer C: Creatine measurement in serum and urine with an automated enzymatic method. Clin Chem. 1993 Aug;39(8):1613-9. [PubMed:8353946 ]
  14. Momeni N, Yoshimoto T, Ryberg B, Sandberg-Wollheim M, Grubb A: Factors influencing analysis of prolyl endopeptidase in human blood and cerebrospinal fluid: increase in assay sensitivity. Scand J Clin Lab Invest. 2003;63(6):387-95. [PubMed:14594319 ]
  15. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]

Only showing the first 10 proteins. There are 12 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Produces N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN). Can also use N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively.
Gene Name:
NANS
Uniprot ID:
Q9NR45
Molecular weight:
40307.26
Reactions
Phosphoenolpyruvic acid + N-Acetylmannosamine + Water → Phosphate + N-Acetylneuraminic aciddetails
Phosphoenolpyruvic acid + N-acyl-D-mannosamine 6-phosphate + Water → N-acylneuraminate 9-phosphate + Phosphatedetails
N-Acetylneuraminic acid 9-phosphate + Phosphate → N-Acetyl-D-mannosamine 6-phosphate + Phosphoenolpyruvic acid + Waterdetails
General function:
Involved in 6-phosphofructokinase activity
Specific function:
Catalyzes the third step of glycolysis, the phosphorylation of fructose-6-phosphate (F6P) by ATP to generate fructose-1,6-bisphosphate (FBP) and ADP.
Gene Name:
PFKP
Uniprot ID:
Q01813
Molecular weight:
85595.405
General function:
Involved in 6-phosphofructokinase activity
Specific function:
Catalyzes the third step of glycolysis, the phosphorylation of fructose-6-phosphate (F6P) by ATP to generate fructose-1,6-bisphosphate (FBP) and ADP.
Gene Name:
PFKL
Uniprot ID:
P17858
Molecular weight:
85017.825
General function:
Involved in 6-phosphofructokinase activity
Specific function:
Catalyzes the third step of glycolysis, the phosphorylation of fructose-6-phosphate (F6P) by ATP to generate fructose-1,6-bisphosphate (FBP) and ADP.
Gene Name:
PFKM
Uniprot ID:
P08237
Molecular weight:
85181.925
General function:
Involved in magnesium ion binding
Specific function:
Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio betwween the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival.
Gene Name:
PKM
Uniprot ID:
P14618
Molecular weight:
65930.14
Reactions
Adenosine triphosphate + Pyruvic acid → ADP + Phosphoenolpyruvic aciddetails
Guanosine triphosphate + Pyruvic acid → Guanosine diphosphate + Phosphoenolpyruvic aciddetails
Deoxyadenosine triphosphate + Pyruvic acid → dADP + Phosphoenolpyruvic aciddetails
dGTP + Pyruvic acid → dGDP + Phosphoenolpyruvic aciddetails
Nucleoside triphosphate + Pyruvic acid → NDP + Phosphoenolpyruvic aciddetails
General function:
Involved in magnesium ion binding
Specific function:
Plays a key role in glycolysis (By similarity).
Gene Name:
PKLR
Uniprot ID:
P30613
Molecular weight:
61829.575
Reactions
Adenosine triphosphate + Pyruvic acid → ADP + Phosphoenolpyruvic aciddetails
Guanosine triphosphate + Pyruvic acid → Guanosine diphosphate + Phosphoenolpyruvic aciddetails
Deoxyadenosine triphosphate + Pyruvic acid → dADP + Phosphoenolpyruvic aciddetails
dGTP + Pyruvic acid → dGDP + Phosphoenolpyruvic aciddetails
Nucleoside triphosphate + Pyruvic acid → NDP + Phosphoenolpyruvic aciddetails
General function:
Involved in phosphoenolpyruvate carboxykinase activity
Specific function:
Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle (By similarity).
Gene Name:
PCK2
Uniprot ID:
Q16822
Molecular weight:
47563.34
Reactions
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + CO(2)details
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + Carbon dioxidedetails
Inosine triphosphate + Oxalacetic acid → IDP + Phosphoenolpyruvic acid + Carbon dioxidedetails
General function:
Involved in phosphoenolpyruvate carboxykinase activity
Specific function:
Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle.
Gene Name:
PCK1
Uniprot ID:
P35558
Molecular weight:
69193.975
Reactions
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + CO(2)details
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + Carbon dioxidedetails
Inosine triphosphate + Oxalacetic acid → IDP + Phosphoenolpyruvic acid + Carbon dioxidedetails
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
General function:
Involved in magnesium ion binding
Specific function:
Appears to have a function in striated muscle development and regeneration.
Gene Name:
ENO3
Uniprot ID:
P13929
Molecular weight:
42248.03
Reactions
2-Phospho-D-glyceric acid → Phosphoenolpyruvic acid + Waterdetails
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [PubMed:10592235 ]
General function:
Involved in magnesium ion binding
Specific function:
Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity).
Gene Name:
ENO2
Uniprot ID:
P09104
Molecular weight:
47268.125
Reactions
2-Phospho-D-glyceric acid → Phosphoenolpyruvic acid + Waterdetails

Transporters

General function:
Not Available
Specific function:
May mediate the release of newly synthesized prostaglandins from cells, the transepithelial transport of prostaglandins, and the clearance of prostaglandins from the circulation. Transports PGD2, as well as PGE1, PGE2 and PGF2A
Gene Name:
SLCO2A1
Uniprot ID:
Q92959
Molecular weight:
70117.0
References
  1. Chan BS, Endo S, Kanai N, Schuster VL: Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am J Physiol Renal Physiol. 2002 Jun;282(6):F1097-102. [PubMed:11997326 ]

Only showing the first 10 proteins. There are 12 proteins in total.