You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2019-07-23 05:44:29 UTC
HMDB IDHMDB0000787
Secondary Accession Numbers
  • HMDB0059658
  • HMDB00787
  • HMDB59658
Metabolite Identification
Common NameSapropterin
DescriptionL-erythro-tetrahydrobiopterin, also known as 5,6,7,8-tetrahydrobiopterin or 6R-BH4, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. They are mainly synthesized in several parts of the body, including the pineal gland. It is also essential in the conversion of phenylalanine to tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine to L-dopa by the enzyme tyrosine hydroxylase; and conversion of tryptophan to 5-hydroxytryptophan via tryptophan hydroxylase. In the hydroxylation process, the co-enzyme loses two electrons and is regenerated in vivo in an NADH-dependent reaction. L-erythro-tetrahydrobiopterin is a drug which is used for the treatment of tetrahydrobiopterin (bh4) deficiency. Tetrahydrobiopterin is also a natural co-factor for nitrate oxide synthase. L-erythro-tetrahydrobiopterin is a moderately basic compound (based on its pKa). L-erythro-tetrahydrobiopterin exists in all living organisms, ranging from bacteria to humans. L-phenylalanine and L-erythro-tetrahydrobiopterin can be converted into L-tyrosine and 4a-hydroxytetrahydrobiopterin; which is mediated by the enzyme phenylalanine-4-hydroxylase. Individuals with a deficiency in tetrahydrobiopterin are not able to efficiently convert phenylalanine to tyrosine. These genes make the enzymes that are critical for producing and recycling tetrahydrobiopterin. In humans, L-erythro-tetrahydrobiopterin is involved in the metabolic disorder called tyrosinemia type 3 (tyro3). As a co-factor for tyrosine hydroxylase, BH4 facilitates the conversion of tyrosine to L-dopa while as a co-factor for tryptophan hydroxylase, BH4 allows the conversion of tryptophan to 5-hydroxytryptophan, which is then converted to serotonin. Tetrahydrobiopterin (BH4) is used to convert several amino acids, including phenylalanine, to other essential molecules in the body including neurotransmitters. As a result, phenylalanine from the diet builds up in the bloodstream and other tissues and can damage nerve cells in the brain.
Structure
Data?1563860669
Synonyms
ValueSource
(-)-(6R)-2-Amino-6-((1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4(3H)-pteridinoneChEBI
(6R)-L-Erythro-5,6,7,8-tetrahydrobiopterinChEBI
(6R)-L-Erythro-tetrahydrobiopterinChEBI
2-Amino-6-(1,2-dihydroxypropyl)-5,6,7,8-tetrahydoro-4(1H)-pteridinoneChEBI
5,6,7,8-TetrahydrobiopterinChEBI
6R-5,6,7,8-TetrahydrobiopterinChEBI
6R-BH4ChEBI
6R-L-5,6,7,8-TetrahydrobiopterinChEBI
R-THBPChEBI
SapropterinaChEBI
SapropterinumChEBI
TetrahydrobiopterinChEBI
5,6,7,8-erythro-TetrahydrobiopterinMeSH, HMDB
5,6,7,8-tetrahydro-L-ErythrobiopterinMeSH, HMDB
5,6,7,8-Tetrahydrobiopterin, (S-(r*,s*))-isomerMeSH, HMDB
5,6,7,8-TetrahydrodictyopterinMeSH, HMDB
6R-L-erythro-5,6,7,8-TetrahydrobiopterinMeSH, HMDB
BPH4MeSH, HMDB
D-threo-TetrahydrobiopterinMeSH, HMDB
THBPMeSH, HMDB
KuvanMeSH, HMDB
Phenylalanine hydroxylase cofactorMeSH, HMDB
Sapropterin dihydrochlorideMeSH, HMDB
tetrahydro-6-BiopterinMeSH, HMDB
2',4',5'-TrihydroxybutyrophenoneMeSH
SapropterinMeSH
TrihydroxybutyrophenoneMeSH
1-Butanone, 1-(2,4,5-trihydroxyphenyl)MeSH
2,4,5-TrihydroxybutyrophenoneMeSH
(6R)-5,6,7,8-Tetrahydro-L-biopterinHMDB
(6R)-5,6,7,8-TetrahydrobiopterinHMDB
(6R)-TetrahydrobiopterinHMDB
2-Amino-6-(1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4(3H)-pteridinoneHMDB
6R-Tetrahydro-L-biopterinHMDB
6beta-5,6,7,8-Tetrahydro-L-biopterinHMDB
6β-5,6,7,8-Tetrahydro-L-biopterinHMDB
L-erythro-TetrahydrobiopterinHMDB
Chemical FormulaC9H15N5O3
Average Molecular Weight241.2471
Monoisotopic Molecular Weight241.117489371
IUPAC Name(6R)-2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-3,4,5,6,7,8-hexahydropteridin-4-one
Traditional Name6R-5,6,7,8-tetrahydrobiopterin
CAS Registry Number62989-33-7
SMILES
[H][C@@]1(CNC2=C(N1)C(=O)NC(N)=N2)[C@@H](O)[C@H](C)O
InChI Identifier
InChI=1S/C9H15N5O3/c1-3(15)6(16)4-2-11-7-5(12-4)8(17)14-9(10)13-7/h3-4,6,12,15-16H,2H2,1H3,(H4,10,11,13,14,17)/t3-,4+,6-/m0/s1
InChI KeyFNKQXYHWGSIFBK-RPDRRWSUSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. They are mainly synthesized in several parts of the body, including the pineal gland.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPteridines and derivatives
Sub ClassPterins and derivatives
Direct ParentBiopterins and derivatives
Alternative Parents
Substituents
  • Biopterin
  • Aminopyrimidine
  • Pyrimidone
  • Secondary aliphatic/aromatic amine
  • Pyrimidine
  • 1,3-aminoalcohol
  • Vinylogous amide
  • Heteroaromatic compound
  • Secondary alcohol
  • 1,2-diol
  • 1,2-aminoalcohol
  • Secondary amine
  • Azacycle
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Disposition

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility2.21 g/LALOGPS
logP-1.8ALOGPS
logP-2.3ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)7.82ChemAxon
pKa (Strongest Basic)1.81ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area132 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity68.63 m³·mol⁻¹ChemAxon
Polarizability23.61 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-MS (6 TMS)splash10-0zfr-2921300000-63bf6ee58b9df85919f6JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0zfr-2921300000-63bf6ee58b9df85919f6JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0005-9810000000-1bfd11724596b460cae9JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-014i-6945000000-07faa91218e86d3bfe0dJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-006x-0090000000-e6b01d1139ccb3c6338dJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0gi3-0980000000-8963ef41f1138b05a813JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-00xr-1900000000-bcfa359703563c696c0fJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-0390000000-4810efa20f31adea3824JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-006y-1930000000-5b32feeb643e238bb159JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9400000000-a7dbebeb1df4ea110948JSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm (predicted from logP)
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.0110 +/- 0.0008 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.026 (0.014-0.038) uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.0099 +/- 0.0008 uMAdult (>18 years old)BothSmoking details
Associated Disorders and Diseases
Disease References
Smoking
  1. Ueda S, Matsuoka H, Miyazaki H, Usui M, Okuda S, Imaizumi T: Tetrahydrobiopterin restores endothelial function in long-term smokers. J Am Coll Cardiol. 2000 Jan;35(1):71-5. [PubMed:10636262 ]
Associated OMIM IDsNone
DrugBank IDDB00360
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00018229
Chemspider IDNot Available
KEGG Compound IDC00272
BioCyc IDCPD-14053
BiGG IDNot Available
Wikipedia LinkSapropterin
METLIN IDNot Available
PubChem Compound44257
PDB IDNot Available
ChEBI ID59560
Food Biomarker OntologyNot Available
VMH IDNot Available
References
Synthesis ReferenceKatoh, Setsuko; Akino, Miki. Biosynthesis of tetrahydrobiopterin in animals. Zoological Science (1986), 3(5), 745-57.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Toda Y, Mori K, Hashimoto T, Miyazaki M, Nozaki S, Watanabe Y, Kuroda Y, Kagami S: Administration of secretin for autism alters dopamine metabolism in the central nervous system. Brain Dev. 2006 Mar;28(2):99-103. Epub 2005 Sep 15. [PubMed:16168596 ]
  2. Moens AL, Kass DA: Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2439-44. Epub 2006 Aug 31. [PubMed:16946131 ]
  3. Komori H, Matsuishi T, Yamada S, Yamashita Y, Ohtaki E, Kato H: Cerebrospinal fluid biopterin and biogenic amine metabolites during oral R-THBP therapy for infantile autism. J Autism Dev Disord. 1995 Apr;25(2):183-93. [PubMed:7559284 ]
  4. Kaufman S: Biopterin-responsive hyperphenylalaninemia. J Nutr Sci Vitaminol (Tokyo). 1992;Spec No:601-6. [PubMed:1297822 ]
  5. Sanford M, Keating GM: Spotlight on sapropterin in primary hyperphenylalaninemia. BioDrugs. 2009;23(3):201-2. doi: 10.2165/00063030-200923030-00007. [PubMed:19627172 ]
  6. MacDonald A, Ahring K, Dokoupil K, Gokmen-Ozel H, Lammardo AM, Motzfeldt K, Robert M, Rocha JC, van Rijn M, Belanger-Quintana A: Adjusting diet with sapropterin in phenylketonuria: what factors should be considered? Br J Nutr. 2011 Jul;106(2):175-82. doi: 10.1017/S0007114511000298. [PubMed:21466737 ]
  7. Burton BK, Nowacka M, Hennermann JB, Lipson M, Grange DK, Chakrapani A, Trefz F, Dorenbaum A, Imperiale M, Kim SS, Fernhoff PM: Safety of extended treatment with sapropterin dihydrochloride in patients with phenylketonuria: results of a phase 3b study. Mol Genet Metab. 2011 Aug;103(4):315-22. doi: 10.1016/j.ymgme.2011.03.020. Epub 2011 Mar 31. [PubMed:21646032 ]
  8. Utz JR, Lorentz CP, Markowitz D, Rudser KD, Diethelm-Okita B, Erickson D, Whitley CB: START, a double blind, placebo-controlled pharmacogenetic test of responsiveness to sapropterin dihydrochloride in phenylketonuria patients. Mol Genet Metab. 2012 Feb;105(2):193-7. doi: 10.1016/j.ymgme.2011.10.014. Epub 2011 Oct 29. [PubMed:22112818 ]
  9. Gordon P, Thomas JA, Suter R, Jurecki E: Evolving patient selection and clinical benefit criteria for sapropterin dihydrochloride (Kuvan(R)) treatment of PKU patients. Mol Genet Metab. 2012 Apr;105(4):672-6. doi: 10.1016/j.ymgme.2011.12.023. Epub 2012 Jan 8. [PubMed:22310224 ]
  10. Leuret O, Barth M, Kuster A, Eyer D, de Parscau L, Odent S, Gilbert-Dussardier B, Feillet F, Labarthe F: Efficacy and safety of BH4 before the age of 4 years in patients with mild phenylketonuria. J Inherit Metab Dis. 2012 Nov;35(6):975-81. doi: 10.1007/s10545-012-9464-3. Epub 2012 Mar 3. [PubMed:22388642 ]
  11. Ziesch B, Weigel J, Thiele A, Mutze U, Rohde C, Ceglarek U, Thiery J, Kiess W, Beblo S: Tetrahydrobiopterin (BH4) in PKU: effect on dietary treatment, metabolic control, and quality of life. J Inherit Metab Dis. 2012 Nov;35(6):983-92. doi: 10.1007/s10545-012-9458-1. Epub 2012 Mar 6. [PubMed:22391997 ]
  12. Cunningham A, Bausell H, Brown M, Chapman M, DeFouw K, Ernst S, McClure J, McCune H, O'Steen D, Pender A, Skrabal J, Wessel A, Jurecki E, Shediac R, Prasad S, Gillis J, Cederbaum S: Recommendations for the use of sapropterin in phenylketonuria. Mol Genet Metab. 2012 Jul;106(3):269-76. doi: 10.1016/j.ymgme.2012.04.004. Epub 2012 Apr 13. [PubMed:22575621 ]
  13. Shintaku H, Ohwada M: Long-term follow-up of tetrahydrobiopterin therapy in patients with tetrahydrobiopterin deficiency in Japan. Brain Dev. 2013 May;35(5):406-10. doi: 10.1016/j.braindev.2012.06.010. Epub 2012 Jul 24. [PubMed:22832064 ]
  14. Somaraju UR, Merrin M: Sapropterin dihydrochloride for phenylketonuria. Cochrane Database Syst Rev. 2012 Dec 12;12:CD008005. doi: 10.1002/14651858.CD008005.pub3. [PubMed:23235653 ]
  15. Gokmen Ozel H, Lammardo AM, Motzfeldt K, Robert M, Rocha JC, van Rijn M, Ahring K, Belanger-Quintana A, MacDonald A, Dokoupil K: Use of sapropterin in the management of phenylketonuria: seven case reports. Mol Genet Metab. 2013 Feb;108(2):109-11. doi: 10.1016/j.ymgme.2012.11.012. Epub 2012 Nov 28. [PubMed:23266371 ]
  16. Thiele AG, Weigel JF, Ziesch B, Rohde C, Mutze U, Ceglarek U, Thiery J, Muller AS, Kiess W, Beblo S: Nutritional Changes and Micronutrient Supply in Patients with Phenylketonuria Under Therapy with Tetrahydrobiopterin (BH(4)). JIMD Rep. 2013;9:31-40. doi: 10.1007/8904_2012_176. Epub 2012 Oct 17. [PubMed:23430545 ]
  17. Cerone R, Andria G, Giovannini M, Leuzzi V, Riva E, Burlina A: Testing for tetrahydrobiopterin responsiveness in patients with hyperphenylalaninemia due to phenylalanine hydroxylase deficiency. Adv Ther. 2013 Mar;30(3):212-28. doi: 10.1007/s12325-013-0011-x. Epub 2013 Feb 20. [PubMed:23436109 ]
  18. Keil S, Anjema K, van Spronsen FJ, Lambruschini N, Burlina A, Belanger-Quintana A, Couce ML, Feillet F, Cerone R, Lotz-Havla AS, Muntau AC, Bosch AM, Meli CA, Billette de Villemeur T, Kern I, Riva E, Giovannini M, Damaj L, Leuzzi V, Blau N: Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics. 2013 Jun;131(6):e1881-8. doi: 10.1542/peds.2012-3291. Epub 2013 May 20. [PubMed:23690520 ]
  19. Blau N: Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert Opin Drug Metab Toxicol. 2013 Sep;9(9):1207-18. doi: 10.1517/17425255.2013.804064. Epub 2013 May 27. [PubMed:23705856 ]
  20. Douglas TD, Jinnah HA, Bernhard D, Singh RH: The effects of sapropterin on urinary monoamine metabolites in phenylketonuria. Mol Genet Metab. 2013 Jul;109(3):243-50. doi: 10.1016/j.ymgme.2013.04.017. Epub 2013 May 1. [PubMed:23712020 ]
  21. Stanhewicz AE, Alexander LM, Kenney WL: Oral sapropterin acutely augments reflex vasodilation in aged human skin through nitric oxide-dependent mechanisms. J Appl Physiol (1985). 2013 Oct 1;115(7):972-8. doi: 10.1152/japplphysiol.00481.2013. Epub 2013 Jun 6. [PubMed:23743404 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Plays an important role in the physiology of adrenergic neurons.
Gene Name:
TH
Uniprot ID:
P07101
Molecular weight:
55611.26
Reactions
L-Tyrosine + Sapropterin + Oxygen → L-Dopa + 4a-Hydroxytetrahydrobiopterindetails
Sapropterin + L-Tyrosine + Oxygen → L-Dopa + 4a-Carbinolamine tetrahydrobiopterin + Waterdetails
General function:
Involved in amino acid binding
Specific function:
Not Available
Gene Name:
PAH
Uniprot ID:
P00439
Molecular weight:
51861.565
Reactions
L-Phenylalanine + Sapropterin + Oxygen → L-Tyrosine + 4a-Hydroxytetrahydrobiopterindetails
Sapropterin + L-Phenylalanine + Oxygen → 4a-Carbinolamine tetrahydrobiopterin + L-Tyrosine + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the final one or two reductions in tetra-hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin.
Gene Name:
SPR
Uniprot ID:
P35270
Molecular weight:
28048.13
Reactions
Sapropterin + NADP → Dyspropterin + NADPHdetails
Sapropterin + NADP → 6-Lactoyltetrahydropterin + NADPH + Hydrogen Iondetails
General function:
Involved in amino acid binding
Specific function:
Not Available
Gene Name:
TPH1
Uniprot ID:
P17752
Molecular weight:
50984.725
Reactions
L-Tryptophan + Sapropterin + Oxygen → 5-Hydroxy-L-tryptophan + 4a-Hydroxytetrahydrobiopterindetails
Sapropterin + L-Tryptophan + Oxygen → 5-Hydroxy-L-tryptophan + 4a-Carbinolamine tetrahydrobiopterin + Waterdetails
General function:
Involved in amino acid binding
Specific function:
Not Available
Gene Name:
TPH2
Uniprot ID:
Q8IWU9
Molecular weight:
56056.295
Reactions
L-Tryptophan + Sapropterin + Oxygen → 5-Hydroxy-L-tryptophan + 4a-Hydroxytetrahydrobiopterindetails
Sapropterin + L-Tryptophan + Oxygen → 5-Hydroxy-L-tryptophan + 4a-Carbinolamine tetrahydrobiopterin + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
The product of this enzyme, tetrahydrobiopterin (BH-4), is an essential cofactor for phenylalanine, tyrosine, and tryptophan hydroxylases.
Gene Name:
QDPR
Uniprot ID:
P09417
Molecular weight:
25789.295
Reactions
4a-Carbinolamine tetrahydrobiopterin + NADH + Hydrogen Ion → Sapropterin + NADdetails
4a-Carbinolamine tetrahydrobiopterin + NADPH + Hydrogen Ion → Sapropterin + NADPdetails
General function:
Involved in oxidoreductase activity
Specific function:
Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.
Gene Name:
NOS3
Uniprot ID:
P29474
Molecular weight:
133273.59
General function:
Not Available
Specific function:
Glyceryl-ether monooxygenase that cleaves the O-alkyl bond of ether lipids. Ether lipids are essential components of brain membranes.
Gene Name:
AGMO
Uniprot ID:
Q6ZNB7
Molecular weight:
51499.41
Reactions
1-alkyl-sn-glycerol + Sapropterin + Oxygen → 1-O-alkyl-sn-glycerol + Dihydrobiopterin + Waterdetails