You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2019-01-11 19:15:16 UTC
Secondary Accession Numbers
  • HMDB00895
Metabolite Identification
Common NameAcetylcholine
DescriptionAcetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID: 17284361 , 17011181 , 15556286 ).
Choline acetateChEBI
Choline acetic acidGenerator
Acetyl choline ionHMDB
Acetylcholine cationHMDB
Acetylcholinium: acetyl-cholineHMDB
Choline acetate (ester)HMDB
Acetylcholine bromideMeSH
Acetylcholine chlorideMeSH
Acetylcholine perchlorateMeSH
Acetylcholine sulfate (1:1)MeSH
Bournonville brand OF acetylcholine chlorideMeSH
Fluoride, acetylcholineMeSH
L-Tartrate, acetylcholineMeSH
Acetilcolina cusiMeSH
Acetylcholine L-tartrateMeSH
Hydroxide, acetylcholineMeSH
Iolab brand OF acetylcholine chlorideMeSH
Acetylcholine L tartrateMeSH
Acetylcholine picrateMeSH
Acetylcholine picrate (1:1)MeSH
Alcon brand OF acetylcholine chlorideMeSH
Ciba vision brand OF acetylcholine chlorideMeSH
Iodide, acetylcholineMeSH
Perchlorate, acetylcholineMeSH
Acetylcholine fluorideMeSH
Acetylcholine hydroxideMeSH
Acetylcholine iodideMeSH
Bromide, acetylcholineMeSH
Cusi, acetilcolinaMeSH
Chemical FormulaC7H16NO2
Average Molecular Weight146.2074
Monoisotopic Molecular Weight146.118103761
IUPAC Name[2-(acetyloxy)ethyl]trimethylazanium
Traditional Nameacetylcholine
CAS Registry Number51-84-3
InChI Identifier
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as acyl cholines. These are acylated derivatives of choline. Choline or 2-Hydroxy-N,N,N-trimethylethanaminium is a quaternary ammonium salt with the chemical formula (CH3)3N+(CH2)2OH.
KingdomOrganic compounds
Super ClassOrganic nitrogen compounds
ClassOrganonitrogen compounds
Sub ClassQuaternary ammonium salts
Direct ParentAcyl cholines
Alternative Parents
  • Acyl choline
  • Tetraalkylammonium salt
  • Carboxylic acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organic salt
  • Organooxygen compound
  • Carbonyl group
  • Amine
  • Organic cation
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physiological effect

Health effect:


Route of exposure:


Biological location:


Naturally occurring process:


Industrial application:

Physical Properties
Experimental Properties
Melting Point148 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility0.14 g/LALOGPS
pKa (Strongest Basic)-7ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area26.3 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity51.35 m³·mol⁻¹ChemAxon
Polarizability16.69 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a4r-9100000000-bf8d3f373f038db1a310View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000j-9600000000-ec60451904fda7dde556View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000l-9000000000-2ea4c086c3ab458a1d7cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0006-9000000000-98d5a70eed75a0945da4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0002-1900000000-2da10e016ac539b6e981View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-000i-9000000000-7efaaa08a6c43d816358View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-000i-9000000000-eb7d66198d7674cbbd2aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-000l-9000000000-41b87d773c58129802e9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0006-9000000000-9e8e66250f2cf34a2046View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0002-0900000000-f7fe18f2371596dc7333View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 30V, Positivesplash10-000j-9800000000-b0f987ebcb0179a2c5abView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-000i-9000000000-1be58612df9c1eef1282View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0002-1900000000-2da10e016ac539b6e981View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-000i-9000000000-7efaaa08a6c43d816358View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-000i-9000000000-eb7d66198d7674cbbd2aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-000l-9000000000-41b87d773c58129802e9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0006-9000000000-9ac44e29bdfbddf1b90dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0002-0900000000-f7fe18f2371596dc7333View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-000j-9800000000-b0f987ebcb0179a2c5abView in MoNA
LC-MS/MSLC-MS/MS Spectrum - , positivesplash10-000j-9400000000-8a3a0b77e93715b85ed4View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Nucleus
Biospecimen Locations
  • Cerebrospinal Fluid (CSF)
  • Saliva
Tissue Locations
  • Adipose Tissue
  • Adrenal Medulla
  • Bladder
  • Brain
  • Fibroblasts
  • Intestine
  • Kidney
  • Lung
  • Muscle
  • Myelin
  • Nerve Cells
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Skin
  • Spleen
  • Testes
Normal Concentrations
Cerebrospinal Fluid (CSF)Detected and Quantified0.034 +/- 0.009 uMAdult (>18 years old)Not SpecifiedNormal details
SalivaDetected and Quantified8.56 +/- 5.19 uMAdult (>18 years old)BothNormal
    • Zerihun T. Dame, ...
Abnormal Concentrations
Cerebrospinal Fluid (CSF)Detected and Quantified0.01 +/- 0.005 uMAdult (>18 years old)Not SpecifiedAlzheimer's disease details
Cerebrospinal Fluid (CSF)Detected and Quantified0.016 +/- 0.007 uMAdult (>18 years old)Not SpecifiedVascular dementia details
Associated Disorders and Diseases
Disease References
Alzheimer's disease
  1. Jia JP, Jia JM, Zhou WD, Xu M, Chu CB, Yan X, Sun YX: Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia. Chin Med J (Engl). 2004 Aug;117(8):1161-4. [PubMed:15361288 ]
Multi-infarct dementia
  1. Jia JP, Jia JM, Zhou WD, Xu M, Chu CB, Yan X, Sun YX: Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia. Chin Med J (Engl). 2004 Aug;117(8):1161-4. [PubMed:15361288 ]
Associated OMIM IDs
DrugBank IDDB03128
Phenol Explorer Compound IDNot Available
FoodDB IDFDB012191
KNApSAcK IDNot Available
Chemspider ID182
KEGG Compound IDC01996
BiGG ID38868
Wikipedia LinkAcetylcholine
PubChem Compound187
ChEBI ID15355
Synthesis ReferenceSzutowicz, Andrzej. Acetylcholine synthesis in synaptosomes. Postepy Biochemii (1979), 25(1), 59-84.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Nguyen VT, Ndoye A, Hall LL, Zia S, Arredondo J, Chernyavsky AI, Kist DA, Zelickson BD, Lawry MA, Grando SA: Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. J Cell Sci. 2001 Mar;114(Pt 6):1189-204. [PubMed:11228162 ]
  2. Chia S, Megson IL, Ludlam CA, Fox KA, Newby DE: Preserved endothelial vasomotion and fibrinolytic function in patients with acute stent thrombosis or in-stent restenosis. Thromb Res. 2003;111(6):343-9. [PubMed:14698651 ]
  3. Grando SA, Kist DA, Qi M, Dahl MV: Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol. 1993 Jul;101(1):32-6. [PubMed:8331294 ]
  4. Beilin B, Bessler H, Papismedov L, Weinstock M, Shavit Y: Continuous physostigmine combined with morphine-based patient-controlled analgesia in the postoperative period. Acta Anaesthesiol Scand. 2005 Jan;49(1):78-84. [PubMed:15675987 ]
  5. Tao J, Jin YF, Yang Z, Wang LC, Gao XR, Lui L, Ma H: Reduced arterial elasticity is associated with endothelial dysfunction in persons of advancing age: comparative study of noninvasive pulse wave analysis and laser Doppler blood flow measurement. Am J Hypertens. 2004 Aug;17(8):654-9. [PubMed:15288882 ]
  6. Jiang JL, Jiang DJ, Tang YH, Li NS, Deng HW, Li YJ: Effect of simvastatin on endothelium-dependent vaso-relaxation and endogenous nitric oxide synthase inhibitor. Acta Pharmacol Sin. 2004 Jul;25(7):893-901. [PubMed:15210062 ]
  7. Haug KH, Bogen IL, Osmundsen H, Walaas I, Fonnum F: Effects on cholinergic markers in rat brain and blood after short and prolonged administration of donepezil. Neurochem Res. 2005 Dec;30(12):1511-20. [PubMed:16362770 ]
  8. Katoh H, Shimada T, Inoue S, Takahashi N, Shimizu H, Ohta Y, Nakamura K, Murakami Y, Ishibashi Y, Matsumori A: Reduced high serum hepatocyte growth factor levels after successful cardioversion in patients with atrial fibrillation. Clin Exp Pharmacol Physiol. 2004 Mar;31(3):145-51. [PubMed:15008956 ]
  9. Main C, Blennerhassett P, Collins SM: Human recombinant interleukin 1 beta suppresses acetylcholine release from rat myenteric plexus. Gastroenterology. 1993 Jun;104(6):1648-54. [PubMed:8500722 ]
  10. Ikarashi Y, Harigaya Y, Tomidokoro Y, Kanai M, Ikeda M, Matsubara E, Kawarabayashi T, Kuribara H, Younkin SG, Maruyama Y, Shoji M: Decreased level of brain acetylcholine and memory disturbance in APPsw mice. Neurobiol Aging. 2004 Apr;25(4):483-90. [PubMed:15013569 ]
  11. Katz SD, Krum H: Acetylcholine-mediated vasodilation in the forearm circulation of patients with heart failure: indirect evidence for the role of endothelium-derived hyperpolarizing factor. Am J Cardiol. 2001 May 1;87(9):1089-92. [PubMed:11348607 ]
  12. Hanna ST, Cao K, Wang R: Interaction of acetylcholine with Kir6.1 channels heterologously expressed in human embryonic kidney cells. Eur J Pharmacol. 2005 May 16;515(1-3):34-42. [PubMed:15894309 ]
  13. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK: Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17213-8. Epub 2005 Nov 7. [PubMed:16275899 ]
  14. Shirahata M, Balbir A, Otsubo T, Fitzgerald RS: Role of acetylcholine in neurotransmission of the carotid body. Respir Physiol Neurobiol. 2007 Jul 1;157(1):93-105. Epub 2007 Jan 11. [PubMed:17284361 ]
  15. Hasselmo ME: The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006 Dec;16(6):710-5. Epub 2006 Sep 29. [PubMed:17011181 ]
  16. Beane M, Marrocco RT: Norepinephrine and acetylcholine mediation of the components of reflexive attention: implications for attention deficit disorders. Prog Neurobiol. 2004 Oct;74(3):167-81. [PubMed:15556286 ]


General function:
Involved in acyltransferase activity
Specific function:
Catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses.
Gene Name:
Uniprot ID:
Molecular weight:
Acetyl-CoA + Choline → Coenzyme A + Acetylcholine details
General function:
Involved in carboxylesterase activity
Specific function:
Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.
Gene Name:
Uniprot ID:
Molecular weight:
Acetylcholine + Water → Choline + Acetic aciddetails
General function:
Involved in carboxylesterase activity
Specific function:
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.
Gene Name:
Uniprot ID:
Molecular weight: