You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2017-12-07 01:22:04 UTC
HMDB IDHMDB0001064
Secondary Accession Numbers
  • HMDB01064
Metabolite Identification
Common NameLinoleoyl-CoA
DescriptionLinoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of Glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid {beta}-oxidation; ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates. (PMID: 17184976 , 16020546 ).
Structure
Thumb
Synonyms
ValueSource
(9Z,12Z)-Octadecadienoyl-CoAHMDB
(9Z,12Z)-Octadecadienoyl-coenzyme AHMDB
Linoleoyl-coenzyme AHMDB
Linoleoyl-coenzyme A, (e,Z)-isomerMeSH
Linoleoyl-coenzyme A, octadecadienoate-1-(14)C-labeled, (Z,Z)-isomerMeSH
coenzyme A, S-9,12-Octadecadienoate, (Z,Z)MeSH
Linoleoyl-coenzyme A, (e,e)-isomerMeSH
Linoleoyl-coenzyme A, (Z,Z)-isomerMeSH
Chemical FormulaC39H66N7O17P3S
Average Molecular Weight1029.964
Monoisotopic Molecular Weight1029.344873947
IUPAC Name{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9E,12E)-octadeca-9,12-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional Name[5-(6-aminopurin-9-yl)-4-hydroxy-2-[({hydroxy[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9E,12E)-octadeca-9,12-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxyphosphoryl}oxy)methyl]oxolan-3-yl]oxyphosphonic acid
CAS Registry Number6709-57-5
SMILES
CCCCC\C=C\C\C=C\CCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OCC1OC(C(O)C1OP(O)(O)=O)N1C=NC2=C(N)N=CN=C12
InChI Identifier
InChI=1S/C39H66N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-30(48)67-23-22-41-29(47)20-21-42-37(51)34(50)39(2,3)25-60-66(57,58)63-65(55,56)59-24-28-33(62-64(52,53)54)32(49)38(61-28)46-27-45-31-35(40)43-26-44-36(31)46/h8-9,11-12,26-28,32-34,38,49-50H,4-7,10,13-25H2,1-3H3,(H,41,47)(H,42,51)(H,55,56)(H,57,58)(H2,40,43,44)(H2,52,53,54)/b9-8+,12-11+
InChI KeyYECLLIMZHNYFCK-MVKOLZDDSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as long-chain fatty acyl coas. These are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentLong-chain fatty acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Beta amino acid or derivatives
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • N-acyl-amine
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Monosaccharide
  • Pyrimidine
  • Alkyl phosphate
  • Fatty amide
  • Phosphoric acid ester
  • Tetrahydrofuran
  • Imidazole
  • Azole
  • Heteroaromatic compound
  • Carbothioic s-ester
  • Secondary alcohol
  • Thiocarboxylic acid ester
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Sulfenyl compound
  • Thiocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Carboxylic acid derivative
  • Organosulfur compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic nitrogen compound
  • Primary amine
  • Organopnictogen compound
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Biological role:

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.86 g/LALOGPS
logP2.83ALOGPS
logP-0.33ChemAxon
logS-3.1ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 ŲChemAxon
Rotatable Bond Count34ChemAxon
Refractivity248.08 m³·mol⁻¹ChemAxon
Polarizability101.78 ųChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-4902020200-9e38d899c8abe14ccd7eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-1913140000-b10d9d98c5277c0902d2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900010000-cfc69b9dba0a949d3f70View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-07gi-9751431400-b0b650d56e95ea5d0f99View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-5920211000-affab4ef5081bba8fabeView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-5900100000-1c01aab497b621f73061View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB022403
KNApSAcK IDNot Available
Chemspider ID10637815
KEGG Compound IDC02050
BioCyc IDCPD-18
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID5977
PubChem Compound5462164
PDB IDNot Available
ChEBI ID15530
References
Synthesis ReferenceKawaguchi, Akihiko; Yoshimura, Tsutomu; Okuda, Shigenobu. A new method for the preparation of acyl-CoA thioesters. Journal of Biochemistry (Tokyo, Japan) (1981), 89(2), 337-9.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Ramsay RR, Mancinelli G, Arduini A: Carnitine palmitoyltransferase in human erythrocyte membrane. Properties and malonyl-CoA sensitivity. Biochem J. 1991 May 1;275 ( Pt 3):685-8. [PubMed:2039446 ]
  2. Domergue F, Abbadi A, Ott C, Zank TK, Zahringer U, Heinz E: Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem. 2003 Sep 12;278(37):35115-26. Epub 2003 Jun 30. [PubMed:12835316 ]
  3. Kawasaki T, Snyder F: Synthesis of a novel acetylated neutral lipid related to platelet-activating factor by acyl-CoA:1-O-alkyl-2-acetyl-sn-glycerol acyltransferase in HL-60 cells. J Biol Chem. 1988 Feb 25;263(6):2593-6. [PubMed:3422635 ]
  4. Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, Mohsen AW, Isaya G, Vockley J: Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem. 2005 Sep 16;280(37):32309-16. Epub 2005 Jul 14. [PubMed:16020546 ]
  5. Ciapaite J, Bakker SJ, Van Eikenhorst G, Wagner MJ, Teerlink T, Schalkwijk CG, Fodor M, Ouwens DM, Diamant M, Heine RJ, Westerhoff HV, Krab K: Functioning of oxidative phosphorylation in liver mitochondria of high-fat diet fed rats. Biochim Biophys Acta. 2007 Mar;1772(3):307-16. Epub 2006 Nov 10. [PubMed:17184976 ]
  6. (). Silva C, Loyola G, Valenzuela R, García-Huidobro T, Monasterio O, Bronfman M. High-affinity binding of fatty acyl-CoAs and peroxisome proliferator-CoA esters to glutathione S-transferases effect on enzymatic activity. Eur J Biochem. 1999 Nov;266(1):143-50.. .

Enzymes

General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May play an important physiological function in brain. May play a regulatory role by modulating the cellular levels of fatty acyl-CoA ligands for certain transcription factors as well as the substrates for fatty acid metabolizing enzymes, contributing to lipid homeostasis. Has broad specificity, active towards fatty acyl-CoAs with chain-lengths of C8-C18. Has a maximal activity toward palmitoyl-CoA.
Gene Name:
ACOT7
Uniprot ID:
O00154
Molecular weight:
40454.945
Reactions
Linoleoyl-CoA + Water → Coenzyme A + Linoleic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Displays high levels of activity on medium- and long chain acyl CoAs.
Gene Name:
ACOT2
Uniprot ID:
P49753
Molecular weight:
53218.02
Reactions
Linoleoyl-CoA + Water → Coenzyme A + Linoleic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity). Succinyl-CoA thioesterase that also hydrolyzes long chain saturated and unsaturated monocarboxylic acyl-CoAs.
Gene Name:
ACOT4
Uniprot ID:
Q8N9L9
Molecular weight:
46326.09
Reactions
Linoleoyl-CoA + Water → Coenzyme A + Linoleic aciddetails
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N-acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.
Gene Name:
ACOT8
Uniprot ID:
O14734
Molecular weight:
35914.02
General function:
Involved in acyltransferase activity
Specific function:
Acyl-CoA:lysocardiolipin acyltransferase. Possesses both lysophosphatidylinositol acyltransferase (LPIAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities. Recognizes both monolysocardiolipin and dilysocardiolipin as substrates with a preference for linoleoyl-CoA and oleoyl-CoA as acyl donors. Acts as a remodeling enzyme for cardiolipin, a major membrane polyglycerophospholipid. Converts lysophosphatidic acid (LPA) into phosphatidic acid (PA) with a relatively low activity. Required for establishment of the hematopoietic and endothelial lineages.
Gene Name:
LCLAT1
Uniprot ID:
Q6UWP7
Molecular weight:
44560.815
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Active towards fatty acyl-CoA with chain-lengths of C12-C16 (By similarity).
Gene Name:
ACOT1
Uniprot ID:
Q86TX2
Molecular weight:
46276.96
Reactions
Linoleoyl-CoA + Water → Coenzyme A + Linoleic aciddetails