You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2017-09-21 18:14:34 UTC
HMDB IDHMDB0001248
Secondary Accession Numbers
  • HMDB01248
Metabolite Identification
Common NameFAD
DescriptionFAD is a condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972).
Structure
Thumb
Synonyms
ValueSource
Adenosine 5'-(trihydrogen pyrophosphate), 5'-5'-ester with riboflavineChEBI
Adenosine 5'-[3-(riboflavin-5'-yl) dihydrogen diphosphate]ChEBI
Flavin adenine dinucleotideChEBI
FLAVIN-adenine dinucleotideChEBI
Riboflavin 5'-(trihydrogen diphosphate), 5'-5'-ester with adenosineChEBI
Riboflavin 5'-adenosine diphosphateChEBI
Adenosine 5'-(trihydrogen pyrophosphoric acid), 5'-5'-ester with riboflavineGenerator
Adenosine 5'-[3-(riboflavin-5'-yl) dihydrogen diphosphoric acid]Generator
Riboflavin 5'-(trihydrogen diphosphoric acid), 5'-5'-ester with adenosineGenerator
Riboflavin 5'-adenosine diphosphoric acidGenerator
1H-Purin-6-amine flavin dinucleotideHMDB
1H-Purin-6-amine flavine dinucleotideHMDB
Adenine-flavin dinucleotideHMDB
Adenine-flavine dinucleotideHMDB
Adenine-riboflavin dinuceotideHMDB
Adenine-riboflavin dinucleotideHMDB
Adenine-riboflavine dinucleotideHMDB
Flamitajin bHMDB
Flanin FHMDB
Flavin adenine dinucleotide oxidizedHMDB
Flavine adenosine diphosphateHMDB
Flavine-adenine dinucleotideHMDB
FlavitanHMDB
FlazirenHMDB
Isoalloxazine-adenine dinucleotideHMDB
Riboflavin-adenine dinucleotideHMDB
Riboflavine-adenine dinucleotideHMDB
Dinucleotide, flavin-adenineMeSH
Chemical FormulaC27H33N9O15P2
Average Molecular Weight785.5497
Monoisotopic Molecular Weight785.157134455
IUPAC Name[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy})phosphinic acid
Traditional Nameflavine-adenine dinucleotide
CAS Registry Number146-14-5
SMILES
CC1=CC2=C(C=C1C)N(C[C@H](O)[C@H](O)[C@H](O)CO[P@](O)(=O)O[P@@](O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1C=NC3=C1N=CN=C3N)C1=NC(=O)NC(=O)C1=N2
InChI Identifier
InChI=1S/C27H33N9O15P2/c1-10-3-12-13(4-11(10)2)35(24-18(32-12)25(42)34-27(43)33-24)5-14(37)19(39)15(38)6-48-52(44,45)51-53(46,47)49-7-16-20(40)21(41)26(50-16)36-9-31-17-22(28)29-8-30-23(17)36/h3-4,8-9,14-16,19-21,26,37-41H,5-7H2,1-2H3,(H,44,45)(H,46,47)(H2,28,29,30)(H,34,42,43)/t14-,15+,16+,19-,20+,21+,26+/m0/s1
InChI KeyVWWQXMAJTJZDQX-UYBVJOGSSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of chemical entities known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions.
KingdomChemical entities
Super ClassOrganic compounds
ClassNucleosides, nucleotides, and analogues
Sub ClassFlavin nucleotides
Direct ParentFlavin nucleotides
Alternative Parents
Substituents
  • Flavin nucleotide
  • (3'->5')-dinucleotide
  • (3'->5')-dinucleotide or analogue
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Flavin
  • Pentose phosphate
  • Pentose-5-phosphate
  • Isoalloxazine
  • Glycosyl compound
  • N-glycosyl compound
  • Organic pyrophosphate
  • Diazanaphthalene
  • 6-aminopurine
  • Pentose monosaccharide
  • Monosaccharide phosphate
  • Pteridine
  • Quinoxaline
  • Imidazopyrimidine
  • Purine
  • Pyrimidone
  • Monoalkyl phosphate
  • Aminopyrimidine
  • N-substituted imidazole
  • Pyrimidine
  • Benzenoid
  • Pyrazine
  • Alkyl phosphate
  • Organic phosphoric acid derivative
  • Primary aromatic amine
  • Imidolactam
  • Phosphoric acid ester
  • Monosaccharide
  • Heteroaromatic compound
  • Imidazole
  • Oxolane
  • Vinylogous amide
  • Azole
  • Secondary alcohol
  • Lactam
  • Polyol
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Alcohol
  • Primary amine
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Amine
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
Biofunction
  • Enzyme cofactor
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Mitochondria
  • Endoplasmic reticulum
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility5 mg/mLNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility4.25 mg/mLALOGPS
logP-0.78ALOGPS
logP-5.3ChemAxon
logS-2.3ALOGPS
pKa (Strongest Acidic)1.86ChemAxon
pKa (Strongest Basic)4.99ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count19ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area356.42 Å2ChemAxon
Rotatable Bond Count13ChemAxon
Refractivity177.43 m3·mol-1ChemAxon
Polarizability70.62 Å3ChemAxon
Number of Rings6ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0001200900-b0740b3d33d50996ccdeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000m-0105900000-3abff26d5bb35f8527b8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-0931700000-73f360589a13230eea7aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000j-0908600300-b1eccda8ebae8b9e4cc1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-0900000000-bdb826f9c3cbc09eff9bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00di-0019800000-00ad56b6b6a3bb4516e6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000b-0009400000-667064ca470a5c341974View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000j-0509700500-8766cb874f927ed5a795View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-0900000000-3125e04c09a14c62f22aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00di-0019700000-78c46ea4b4f562757e56View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000b-0009400000-94b845d2c8d082b9484cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000100900-6bac7b7f631dfc074a0cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0920000000-49c9d4fb9b57a59f45a5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-572f0b1bd59f71ab3c5fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-d2ede6a2e7183f1c32a3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000100900-78554afbc26abe26af35View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0930000000-274da0a01c651b791733View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-55939cda9e14fc582757View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-db784762434fac3d351fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondria
  • Endoplasmic reticulum
  • Peroxisome
Biofluid Locations
  • Blood
  • Feces
Tissue Location
  • Erythrocyte
  • Liver
  • Muscle
Pathways
NameSMPDB/PathwhizKEGG
2-Hydroxyglutric Aciduria (D And L Form)Pw000212Pw000212 greyscalePw000212 simpleNot Available
2-Methyl-3-Hydroxybutryl CoA Dehydrogenase DeficiencyPw000061Pw000061 greyscalePw000061 simpleNot Available
2-aminoadipic 2-oxoadipic aciduriaPw000696Pw000696 greyscalePw000696 simpleNot Available
2-ketoglutarate dehydrogenase complex deficiencyPw000525Pw000525 greyscalePw000525 simpleNot Available
27-Hydroxylase DeficiencyPw000697Pw000697 greyscalePw000697 simpleNot Available
Displaying entries 1 - 5 of 219 in total
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.061 (0.044-0.078) uMAdult (>18 years old)FemaleNormal details
BloodDetected and Quantified0.078 +/- 0.054 uMAdolescent (13-18 years old)FemaleNormal details
BloodDetected and Quantified0.075 (0.056-0.097) uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.031 +/- 0.01 uMChildren (1-13 years old)BothMalnutrition (type kwashiorkor and marasmus) details
BloodDetected and Quantified0.048 +/- 0.023 uMAdolescent (13-18 years old)FemaleAnorexia nervosa details
FecesDetected but not Quantified Adult (>18 years old)BothColorectal Cancer details
Associated Disorders and Diseases
Disease References
Anorexia nervosa
  1. Capo-chichi CD, Gueant JL, Lefebvre E, Bennani N, Lorentz E, Vidailhet C, Vidailhet M: Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am J Clin Nutr. 1999 Apr;69(4):672-8. [PubMed:10197568 ]
Associated OMIM IDs
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022511
KNApSAcK IDNot Available
Chemspider ID559059
KEGG Compound IDC00016
BioCyc IDFAD
BiGG ID33521
Wikipedia LinkFAD
NuGOwiki LinkHMDB0001248
METLIN ID6106
PubChem Compound643975
PDB IDFAD
ChEBI ID16238
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Flatz G, Simmersbach F: Flavin adenine dinucleotide concentration in erythrocytes with normal and deficient glucose-6-phosphate dehydrogenase. Klin Wochenschr. 1970 Sep 1;48(17):1071-2. [PubMed:5523465 ]
  2. Zempleni J: Determination of riboflavin and flavocoenzymes in human blood plasma by high-performance liquid chromatography. Ann Nutr Metab. 1995;39(4):224-6. [PubMed:8546438 ]
  3. Becker K, Wilkinson AR: Flavin adenine dinucleotide levels in erythrocytes of very low birthweight infants under vitamin supplementation. Biol Neonate. 1993;63(2):80-5. [PubMed:8448258 ]
  4. Lisowsky T, Lee JE, Polimeno L, Francavilla A, Hofhaus G: Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig Liver Dis. 2001 Mar;33(2):173-80. [PubMed:11346147 ]
  5. Cimino JA, Jhangiani S, Schwartz E, Cooperman JM: Riboflavin metabolism in the hypothyroid human adult. Proc Soc Exp Biol Med. 1987 Feb;184(2):151-3. [PubMed:3809170 ]
  6. Kodentsova VM, Vrzhesinskaia OA, Alekseeva IA, Spirichev VB: [Comparison of biochemical criteria for supplying the human body with riboflavin]. Vopr Med Khim. 1991 Sep-Oct;37(5):76-9. [PubMed:1759408 ]
  7. Lopez-Anaya A, Mayersohn M: Quantification of riboflavin, riboflavin 5'-phosphate and flavin adenine dinucleotide in plasma and urine by high-performance liquid chromatography. J Chromatogr. 1987 Dec 25;423:105-13. [PubMed:3443641 ]
  8. Van Binsbergen CJ, Odink J, Van den Berg H, Koppeschaar H, Coelingh Bennink HJ: Nutritional status in anorexia nervosa: clinical chemistry, vitamins, iron and zinc. Eur J Clin Nutr. 1988 Nov;42(11):929-37. [PubMed:3074921 ]
  9. Mohrenweiser HW, Novotny JE: ACP1GUA-1--a low-activity variant of human erythrocyte acid phosphatase: association with increased glutathione reductase activity. Am J Hum Genet. 1982 May;34(3):425-33. [PubMed:7081221 ]
  10. Gianazza E, Vergani L, Wait R, Brizio C, Brambilla D, Begum S, Giancaspero TA, Conserva F, Eberini I, Bufano D, Angelini C, Pegoraro E, Tramontano A, Barile M: Coordinated and reversible reduction of enzymes involved in terminal oxidative metabolism in skeletal muscle mitochondria from a riboflavin-responsive, multiple acyl-CoA dehydrogenase deficiency patient. Electrophoresis. 2006 Mar;27(5-6):1182-98. [PubMed:16470778 ]
  11. Cimino JA, Noto RA, Fusco CL, Cooperman JM: Riboflavin metabolism in the hypothyroid newborn. Am J Clin Nutr. 1988 Mar;47(3):481-3. [PubMed:3348160 ]

Only showing the first 50 proteins. There are 166 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction.
Gene Name:
DLD
Uniprot ID:
P09622
Molecular weight:
54176.91
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADL
Uniprot ID:
P28330
Molecular weight:
47655.275
Reactions
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
Octanoyl-CoA + FAD → (2E)-Octenoyl-CoA + FADHdetails
Lauroyl-CoA + FAD → (2E)-Dodecenoyl-CoA + FADHdetails
Tetradecanoyl-CoA + FAD → (2E)-Tetradecenoyl-CoA + FADHdetails
Hexanoyl-CoA + FAD → trans-2-Hexenoyl-CoA + FADHdetails
Decanoyl-CoA (n-C10:0CoA) + FAD → (2E)-Decenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADS
Uniprot ID:
P16219
Molecular weight:
44296.705
Reactions
Butyryl-CoA + FAD → FADH + (E)-but-2-enoyl-CoAdetails
Hexanoyl-CoA + FAD → trans-2-Hexenoyl-CoA + FADHdetails
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
This enzyme is specific for acyl chain lengths of 4 to 16.
Gene Name:
ACADM
Uniprot ID:
P11310
Molecular weight:
46587.98
Reactions
Propionyl-CoA + FAD → FADH + Acrylyl-CoAdetails
Butyryl-CoA + FAD → FADH + (E)-but-2-enoyl-CoAdetails
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
Octanoyl-CoA + FAD → (2E)-Octenoyl-CoA + FADHdetails
Lauroyl-CoA + FAD → (2E)-Dodecenoyl-CoA + FADHdetails
Tetradecanoyl-CoA + FAD → (2E)-Tetradecenoyl-CoA + FADHdetails
Isovaleryl-CoA + FAD → 3-Methylcrotonyl-CoA + FADHdetails
Hexanoyl-CoA + FAD → trans-2-Hexenoyl-CoA + FADHdetails
Decanoyl-CoA (n-C10:0CoA) + FAD → (2E)-Decenoyl-CoA + FADHdetails
General function:
Involved in oxidation reduction
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND1
Uniprot ID:
P03886
Molecular weight:
35660.055
General function:
Involved in NADH dehydrogenase activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB1
Uniprot ID:
O75438
Molecular weight:
6961.2
General function:
Involved in catalytic activity
Specific function:
Involved primarily in ATP hydrolysis at the plasma membrane. Plays a role in regulating pyrophosphate levels, and functions in bone mineralization and soft tissue calcification. In vitro, has a broad specificity, hydrolyzing other nucleoside 5' triphosphates such as GTP, CTP, TTP and UTP to their corresponding monophosphates with release of pyrophosphate and diadenosine polyphosphates, and also 3',5'-cAMP to AMP. May also be involved in the regulation of the availability of nucleotide sugars in the endoplasmic reticulum and Golgi, and the regulation of purinergic signaling. Appears to modulate insulin sensitivity.
Gene Name:
ENPP1
Uniprot ID:
P22413
Molecular weight:
104923.58
Reactions
FAD + Water → Adenosine monophosphate + Flavin Mononucleotidedetails
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS2
Uniprot ID:
O75306
Molecular weight:
51851.59
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHC
Uniprot ID:
Q99643
Molecular weight:
16650.185
General function:
Involved in oxidoreductase activity
Specific function:
Metabolizes sarcosine, L-pipecolic acid and L-proline.
Gene Name:
PIPOX
Uniprot ID:
Q9P0Z9
Molecular weight:
44065.515
General function:
Amino acid transport and metabolism
Specific function:
Flavoenzyme which catalyzes the oxidation of N(1)-acetylspermine to spermidine and is thus involved in the polyamine back-conversion. Can also oxidize N(1)-acetylspermidine to putrescine. Substrate specificity: N(1)-acetylspermine = N(1)-acetylspermidine > N(1),N(12)-diacylspermine >> spermine. Does not oxidize spermidine. Plays an important role in the regulation of polyamine intracellular concentration and has the potential to act as a determinant of cellular sensitivity to the antitumor polyamine analogs.
Gene Name:
PAOX
Uniprot ID:
Q6QHF9
Molecular weight:
55512.64
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA12
Uniprot ID:
Q9UI09
Molecular weight:
17114.4
General function:
Involved in oxidoreductase activity
Specific function:
Desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction.
Gene Name:
CYB5R3
Uniprot ID:
P00387
Molecular weight:
34234.55
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
AOX1
Uniprot ID:
Q06278
Molecular weight:
147916.735
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA1
Uniprot ID:
O15239
Molecular weight:
8072.3
General function:
Not Available
Specific function:
Not Available
Gene Name:
NDUFA4L2
Uniprot ID:
Q9NRX3
Molecular weight:
9965.6
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA3
Uniprot ID:
O95167
Molecular weight:
9278.8
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA8
Uniprot ID:
P51970
Molecular weight:
20104.9
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA4
Uniprot ID:
O00483
Molecular weight:
9369.8
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND4L
Uniprot ID:
P03901
Molecular weight:
10741.005
General function:
Involved in protein transporter activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA11
Uniprot ID:
Q86Y39
Molecular weight:
14852.0
General function:
Involved in oxidoreductase activity
Specific function:
Isoform 1 may possess glutaredoxin activity as well as thioredoxin reductase activity and induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. Isoform 4 enhances the transcriptional activity of estrogen receptors alpha and beta while isoform 5 enhances the transcriptional activity of the beta receptor only. Isoform 5 also mediates cell death induced by a combination of interferon-beta and retinoic acid.
Gene Name:
TXNRD1
Uniprot ID:
Q16881
Molecular weight:
70905.58
General function:
Involved in iron ion binding
Specific function:
Catalyzes a dehydrogenation to introduce C5-6 double bond into lathosterol.
Gene Name:
SC5DL
Uniprot ID:
O75845
Molecular weight:
35300.55
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS4
Uniprot ID:
O43181
Molecular weight:
20107.8
General function:
Involved in electron carrier activity
Specific function:
The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis.
Gene Name:
NQO2
Uniprot ID:
P16083
Molecular weight:
25918.4
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS3
Uniprot ID:
O75489
Molecular weight:
30241.245
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS5
Uniprot ID:
O43920
Molecular weight:
12517.4
General function:
Involved in oxidoreductase activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFV2
Uniprot ID:
P19404
Molecular weight:
27391.36
General function:
Involved in flavin-containing monooxygenase activity
Specific function:
In contrast with other forms of FMO it does not seem to be a drug-metabolizing enzyme.
Gene Name:
FMO5
Uniprot ID:
P49326
Molecular weight:
32480.04
General function:
Involved in ATP binding
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA10
Uniprot ID:
O95299
Molecular weight:
40750.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA6
Uniprot ID:
P56556
Molecular weight:
17870.7
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
Gene Name:
ACOX1
Uniprot ID:
Q15067
Molecular weight:
70135.205
Reactions
Butyryl-CoA + FAD → FADH + (E)-but-2-enoyl-CoAdetails
hexadecanoyl-CoA + FAD → (2E)-Hexadecenoyl-CoA + FADHdetails
Octanoyl-CoA + FAD → (2E)-Octenoyl-CoA + FADHdetails
Lauroyl-CoA + FAD → (2E)-Dodecenoyl-CoA + FADHdetails
Tetradecanoyl-CoA + FAD → (2E)-Tetradecenoyl-CoA + FADHdetails
Hexanoyl-CoA + FAD → trans-2-Hexenoyl-CoA + FADHdetails
Decanoyl-CoA (n-C10:0CoA) + FAD → (2E)-Decenoyl-CoA + FADHdetails
OPC8-CoA + FAD → trans-2-Enoyl-OPC8-CoA + FADHdetails
OPC6-CoA + FAD → trans-2-Enoyl-OPC6-CoA + FADHdetails
OPC4-CoA + FAD → trans-2-Enoyl-OPC4-CoA + FADHdetails
Tetracosahexaenoyl CoA + FAD → Trans-2-all-cis-6,9,12,15,18,21-tetracosaheptaenoyl-CoA + FADHdetails
Tetracosapentaenoyl coenzyme A, n-6 + FAD → (2E,6Z,9Z,12Z,15Z,18Z)-Tetracosahexa-2,6,9,12,15,18-enoyl-CoA + FADHdetails
General function:
Involved in D-amino-acid oxidase activity
Specific function:
Selectively catalyzes the oxidative deamination of D-aspartate and its N-methylated derivative, N-methyl D-aspartate.
Gene Name:
DDO
Uniprot ID:
Q99489
Molecular weight:
40992.53
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB4
Uniprot ID:
O95168
Molecular weight:
15208.4
General function:
Involved in electron carrier activity
Specific function:
Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor.
Gene Name:
SDHA
Uniprot ID:
P31040
Molecular weight:
72690.975
General function:
Involved in heme oxygenase (decyclizing) activity
Specific function:
Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed. Heme oxygenase 2 could be implicated in the production of carbon monoxide in brain where it could act as a neurotransmitter.
Gene Name:
HMOX2
Uniprot ID:
P30519
Molecular weight:
36032.615
Reactions
Hemoglobin + FADH + Oxygen → Globin + Biliverdin + Carbon monoxide + Fe3+ + FAD + Waterdetails
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone.
Gene Name:
NDUFS8
Uniprot ID:
O00217
Molecular weight:
23704.795
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the first oxygenation step in sterol biosynthesis and is suggested to be one of the rate-limiting enzymes in this pathway.
Gene Name:
SQLE
Uniprot ID:
Q14534
Molecular weight:
63922.505
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND2
Uniprot ID:
P03891
Molecular weight:
38960.47
General function:
Involved in flavin-containing monooxygenase activity
Specific function:
Catalyzes the N-oxidation of certain primary alkylamines to their oximes via an N-hydroxylamine intermediate. Inactive toward certain tertiary amines, such as imipramine or chloropromazine. Can catalyze the S-oxidation of methimazole. The truncated form is catalytically inactive.
Gene Name:
FMO2
Uniprot ID:
Q99518
Molecular weight:
53643.29
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA7
Uniprot ID:
O95182
Molecular weight:
12551.3
General function:
Involved in oxidoreductase activity
Specific function:
Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox-regulated cell signaling.
Gene Name:
TXNRD2
Uniprot ID:
Q9NNW7
Molecular weight:
56506.275
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA2
Uniprot ID:
O43678
Molecular weight:
10921.4
General function:
Involved in cobalamin binding
Specific function:
Catalyzes the transfer of a methyl group from methyl-cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity).
Gene Name:
MTR
Uniprot ID:
Q99707
Molecular weight:
140525.91
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine.
Gene Name:
MAOB
Uniprot ID:
P27338
Molecular weight:
58762.475
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
Gene Name:
NDUFS1
Uniprot ID:
P28331
Molecular weight:
67523.595
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB5
Uniprot ID:
O43674
Molecular weight:
21750.0
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids.
Gene Name:
ACOX2
Uniprot ID:
Q99424
Molecular weight:
76826.14
General function:
Involved in flavin-containing monooxygenase activity
Specific function:
This protein is involved in the oxidative metabolism of a variety of xenobiotics such as drugs and pesticides.
Gene Name:
FMO4
Uniprot ID:
P31512
Molecular weight:
63342.055
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
IVD
Uniprot ID:
P26440
Molecular weight:
43055.325
Reactions
Isovaleryl-CoA + FAD → 3-Methylcrotonyl-CoA + FADHdetails

Only showing the first 50 proteins. There are 166 proteins in total.