You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2018-01-12 23:23:49 UTC
HMDB IDHMDB0000036
Secondary Accession Numbers
  • HMDB00036
Metabolite Identification
Common NameTaurocholic acid
DescriptionTaurocholic acid is a bile acid and is the product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487 , 16037564 , 12576301 , 11907135 ) Taurocholic acid, as with all bile acids, acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic (a bile purging agent). Hydrolysis of taurocholic acid yields taurine, a nonessential amino acid. Taurocholic acid is one of the main components of urinary nonsulfated bile acids in biliary atresia. Raised levels of the bile acid taurocholate in the fetal serum in obstetric cholestasis may result in the development of a fetal dysrhythmia and in sudden intra-uterine death. (PMID: 3944741 , 11256973 ).
Structure
Thumb
Synonyms
ValueSource
3a,7a,12a-Trihydroxy-5b-cholanic acid-24-taurineHMDB
Cholaic acidHMDB
Cholic acid taurine conjugateHMDB
CholyltaurineHMDB
N-Choloyl-taurineHMDB
N-CholoyltaurineHMDB
TaurocholateHMDB
Chemical FormulaC26H45NO7S
Average Molecular Weight515.703
Monoisotopic Molecular Weight515.291673489
IUPAC Name2-{4-[(5R,7S,9R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido}ethane-1-sulfonic acid
Traditional Name2-{4-[(5R,7S,9R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido}ethanesulfonic acid
CAS Registry Number81-24-3
SMILES
[H][C@@]12C[C@H](O)CCC1(C)C1C[C@H](O)C3(C)C(CCC3C1[C@H](O)C2)C(C)CCC(=O)NCCS(O)(=O)=O
InChI Identifier
InChI=1S/C26H45NO7S/c1-15(4-7-23(31)27-10-11-35(32,33)34)18-5-6-19-24-20(14-22(30)26(18,19)3)25(2)9-8-17(28)12-16(25)13-21(24)29/h15-22,24,28-30H,4-14H2,1-3H3,(H,27,31)(H,32,33,34)/t15?,16-,17+,18?,19?,20?,21+,22-,24?,25?,26?/m0/s1
InChI KeyWBWWGRHZICKQGZ-BKXUXKPJSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as taurinated bile acids and derivatives. These are bile acid derivatives containing a taurine conjugated to the bile acid moiety.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassBile acids, alcohols and derivatives
Direct ParentTaurinated bile acids and derivatives
Alternative Parents
Substituents
  • Taurinated bile acid
  • Trihydroxy bile acid, alcohol, or derivatives
  • Hydroxy bile acid, alcohol, or derivatives
  • 3-hydroxysteroid
  • 12-hydroxysteroid
  • Hydroxysteroid
  • 3-alpha-hydroxysteroid
  • 7-hydroxysteroid
  • Fatty acyl
  • Fatty amide
  • N-acyl-amine
  • Alkanesulfonic acid
  • Cyclic alcohol
  • Organic sulfonic acid or derivatives
  • Organosulfonic acid or derivatives
  • Organosulfonic acid
  • Sulfonyl
  • Secondary alcohol
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Polyol
  • Carboxylic acid derivative
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxygen compound
  • Alcohol
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic oxide
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect

Health effect:

  Health condition:

    Hepatobiliary disorders:

Process

Naturally occurring process:

  Biological process:

    Biochemical pathway:

    Cellular process:

Disposition

Source:

  Biological:

    Animal:

Route of exposure:

  Enteral:

Biological Location:

  Biofluid and excreta:

  Organ and components:

  Cell and elements:

    Cell:

  Subcellular:

  Tissue and substructures:

Role

Industrial application:

Biological role:

  Molecular messenger:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point125 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.077 g/LALOGPS
logP0.79ALOGPS
logP-0.53ChemAxon
logS-3.8ALOGPS
pKa (Strongest Acidic)-1.1ChemAxon
pKa (Strongest Basic)0.28ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area144.16 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity132.19 m³·mol⁻¹ChemAxon
Polarizability56.72 ųChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0g4j-0304910000-abaac57e1701023a2764View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-0f6y-1110149000-f02b3a22c512c41f7c03View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-02vj-0000930000-3da4a61de557ceafd64eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-03dr-0146900000-496ef2d89c5640e6a0e6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-004i-1900000000-1d3a42bca59d0e7c917dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000t-0201910000-4c0d194625e9b7b9a813View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a7j-1904700000-038a14191a9033d2c5e1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-002f-7809600000-8badd8a2f0f913acbe36View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-3000690000-34b9a4282f7ecedef15dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-01x1-8604940000-a1bb7aad15e0f52987fbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-001l-9201100000-561bc85372cd1f2da0f9View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
Biological Properties
Cellular Locations
  • Extracellular
Biofluid Locations
  • Bile
  • Blood
  • Feces
  • Urine
Tissue Location
  • Fibroblasts
  • Hepatocyte
  • Intestine
  • Liver
  • Myelin
Pathways
NameSMPDB/PathwhizKEGG
27-Hydroxylase DeficiencyPw000697Pw000697 greyscalePw000697 simpleNot Available
Bile Acid BiosynthesisPw000145Pw000145 greyscalePw000145 simpleMap00120
Cerebrotendinous Xanthomatosis (CTX)Pw000196Pw000196 greyscalePw000196 simpleNot Available
Congenital Bile Acid Synthesis Defect Type IIPw000192Pw000192 greyscalePw000192 simpleNot Available
Congenital Bile Acid Synthesis Defect Type IIIPw000193Pw000193 greyscalePw000193 simpleNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BileDetected and Quantified9910 (9600-10220) uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.38 +/- 0.20 uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified0.1(0.1-0.5) uMInfant (0-1 year old)Both
Normal
details
FecesDetected and Quantified5.78 +/- 4.32 nmol/g of fecesNot SpecifiedNot Specified
Normal
details
FecesDetected but not Quantified Adult (>18 years old)BothNormal details
FecesDetected but not Quantified Children (1-13 years old)BothNormal details
FecesDetected but not Quantified Children (6 - 18 years old)Not SpecifiedNormal details
FecesDetected but not Quantified Adult (>18 years old)BothNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified9.8 +/- 1.9 uMInfant (0-1 year old)Both
GI disorder
details
BloodDetected and Quantified5.6 +/- 1.6 uMInfant (0-1 year old)Both
GI disorder
details
BloodDetected and Quantified1.2 +/- 0.5 uMInfant (0-1 year old)Both
GI disorder
details
BloodDetected and Quantified0.2 +/- 0.1 uMInfant (0-1 year old)Both
GI disorder
details
BloodDetected and Quantified0.8(0.3-2.7) uMInfant (0-1 year old)Both
Severe acute malnutrition
details
BloodDetected but not Quantified Adult (>18 years old)Both
Hepatocellular carcinoma
details
BloodDetected but not Quantified Adult (>18 years old)Both
Liver Cirrhosis
details
FecesDetected but not Quantified Adult (>18 years old)BothCCD details
FecesDetected but not Quantified Adult (>18 years old)BothICD details
FecesDetected but not Quantified Not SpecifiedNot Specified
Recurrent Clostridium difficile infection
details
FecesDetected but not Quantified Not SpecifiedNot Specified
Recurrent Clostridium difficile infection
details
FecesDetected but not Quantified Adult (>18 years old)BothClostridium difficile infection details
FecesDetected but not Quantified Adult (>18 years old)BothColorectal Cancer details
FecesDetected but not Quantified Children (6 - 18 years old)Not SpecifiedCrohns disease details
FecesDetected but not Quantified Children (6 - 18 years old)Not SpecifiedUlcerative colitis details
FecesDetected but not Quantified Children (6 - 18 years old)Not SpecifiedUnclassified IBD details
FecesDetected but not Quantified Adult (>18 years old)BothICD details
FecesDetected but not Quantified Adult (>18 years old)BothCCD details
UrineDetected and Quantified0.15 +/- 0.087 umol/mmol creatinineAdult (>18 years old)BothBiliary atresia details
Associated Disorders and Diseases
Disease References
Biliary atresia
  1. Nittono H, Obinata K, Nakatsu N, Watanabe T, Niijima S, Sasaki H, Arisaka O, Kato H, Yabuta K, Miyano T: Sulfated and nonsulfated bile acids in urine of patients with biliary atresia: analysis of bile acids by high-performance liquid chromatography. J Pediatr Gastroenterol Nutr. 1986 Jan;5(1):23-9. [PubMed:3944741 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB012335
KNApSAcK IDNot Available
Chemspider ID389467
KEGG Compound IDC05122
BioCyc IDCPD-3743
BiGG ID45150
Wikipedia LinkTaurocholic acid
METLIN ID5104
PubChem Compound440567
PDB ID1AQL
ChEBI ID28865
References
Synthesis ReferenceSchersten, Tore; Bjorntorp, Per; Ekdahi, Per H.; Bjorkerud, Soren. Synthesis of taurocholic and glycocholic acids by preparations of human liver. II. An analysis of the stimulating effect of the L fraction. Biochimica et Biophysica Acta, General Subjects (1967), 141(1), 155-63.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5. [PubMed:11408531 ]
  2. Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D: Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 2003 Aug;38(2):374-84. [PubMed:12883481 ]
  3. Hoekman MF, Rientjes JM, Twisk J, Planta RJ, Princen HM, Mager WH: Transcriptional regulation of the gene encoding cholesterol 7 alpha-hydroxylase in the rat. Gene. 1993 Aug 25;130(2):217-23. [PubMed:8359688 ]
  4. Sandker GW, Weert B, Olinga P, Wolters H, Slooff MJ, Meijer DK, Groothuis GM: Characterization of transport in isolated human hepatocytes. A study with the bile acid taurocholic acid, the uncharged ouabain and the organic cations vecuronium and rocuronium. Biochem Pharmacol. 1994 Jun 15;47(12):2193-200. [PubMed:7913319 ]
  5. Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G: Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology. 1997 Oct;113(4):1295-305. [PubMed:9322525 ]
  6. Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart JC, Gonzalez FJ, Staels B: Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 2003 Aug;125(2):544-55. [PubMed:12891557 ]
  7. Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S: Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord. 2005 Sep;5(3):289-303. [PubMed:16178789 ]
  8. Duan RD, Cheng Y, Tauschel HD, Nilsson A: Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase: a potential implication in tumorigenesis. Dig Dis Sci. 1998 Jan;43(1):26-32. [PubMed:9508530 ]
  9. Akao T: Influence of various bile acids on the metabolism of glycyrrhizin and glycyrrhetic acid by Ruminococcus sp. PO1-3 of human intestinal bacteria. Biol Pharm Bull. 1999 Aug;22(8):787-93. [PubMed:10480314 ]
  10. Jigorel E, Le Vee M, Boursier-Neyret C, Bertrand M, Fardel O: Functional expression of sinusoidal drug transporters in primary human and rat hepatocytes. Drug Metab Dispos. 2005 Oct;33(10):1418-22. Epub 2005 Jul 13. [PubMed:16014767 ]
  11. Zahner D, Eckhardt U, Petzinger E: Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem. 2003 Mar;270(6):1117-27. [PubMed:12631271 ]
  12. Wang LF, Luo H, Miyoshi M, Imoto T, Hiji Y, Sasaki T: Inhibitory effect of gymnemic acid on intestinal absorption of oleic acid in rats. Can J Physiol Pharmacol. 1998 Oct-Nov;76(10-11):1017-23. [PubMed:10100884 ]
  13. Yamamoto Y, Moore R, Hess HA, Guo GL, Gonzalez FJ, Korach KS, Maronpot RR, Negishi M: Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem. 2006 Jun 16;281(24):16625-31. Epub 2006 Apr 10. [PubMed:16606610 ]
  14. Kwekkeboom J, Princen HM, van Voorthuizen EM, Meijer P, Kempen HJ: Comparison of taurocholate accumulation in cultured hepatocytes of pig, rat and man. Biochem Biophys Res Commun. 1989 Jul 31;162(2):619-25. [PubMed:2757635 ]
  15. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest. 2002 Apr;109(7):961-71. [PubMed:11927623 ]
  16. Perwaiz S, Tuchweber B, Mignault D, Gilat T, Yousef IM: Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J Lipid Res. 2001 Jan;42(1):114-9. [PubMed:11160372 ]
  17. Johnson RC, Shah SN: Cholesterol ester hydrolase(s) in mammalian brain: is there a myelin-specific cholesterol ester hydrolase? Neurochem Res. 1986 Nov;11(11):1571-82. [PubMed:3683732 ]
  18. Balakrishnan A, Sussman DJ, Polli JE: Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT). Pharm Res. 2005 Aug;22(8):1269-80. Epub 2005 Aug 3. [PubMed:16078136 ]
  19. Nittono H, Obinata K, Nakatsu N, Watanabe T, Niijima S, Sasaki H, Arisaka O, Kato H, Yabuta K, Miyano T: Sulfated and nonsulfated bile acids in urine of patients with biliary atresia: analysis of bile acids by high-performance liquid chromatography. J Pediatr Gastroenterol Nutr. 1986 Jan;5(1):23-9. [PubMed:3944741 ]
  20. St-Pierre MV, Kullak-Ublick GA, Hagenbuch B, Meier PJ: Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol. 2001 May;204(Pt 10):1673-86. [PubMed:11316487 ]
  21. Claudel T, Staels B, Kuipers F: The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2020-30. Epub 2005 Jul 21. [PubMed:16037564 ]
  22. Chiang JY: Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol. 2003 Mar;284(3):G349-56. [PubMed:12576301 ]
  23. Davis RA, Miyake JH, Hui TY, Spann NJ: Regulation of cholesterol-7alpha-hydroxylase: BAREly missing a SHP. J Lipid Res. 2002 Apr;43(4):533-43. [PubMed:11907135 ]
  24. Williamson C, Gorelik J, Eaton BM, Lab M, de Swiet M, Korchev Y: The bile acid taurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. Clin Sci (Lond). 2001 Apr;100(4):363-9. [PubMed:11256973 ]
  25. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  26. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  27. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  28. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  29. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 24 proteins in total.

Enzymes

General function:
Lipid transport and metabolism
Specific function:
Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.
Gene Name:
CEL
Uniprot ID:
P19835
Molecular weight:
79666.385
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [PubMed:10592235 ]
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes a rate-limiting step in cholesterol catabolism and bile acid biosynthesis by introducing a hydrophilic moiety at position 7 of cholesterol. Important for cholesterol homeostasis.
Gene Name:
CYP7A1
Uniprot ID:
P22680
Molecular weight:
57660.155
References
  1. Twisk J, Lehmann EM, Princen HM: Differential feedback regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes. Biochem J. 1993 Mar 15;290 ( Pt 3):685-91. [PubMed:8457195 ]
General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
Reactions
Choloyl-CoA + Taurine → Coenzyme A + Taurocholic aciddetails
General function:
Involved in binding
Specific function:
Ileal protein which stimulates gastric acid and pepsinogen secretion. Seems to be able to bind to bile salts and bilirubins. Isoform 2 is essential for the survival of colon cancer cells to bile acid-induced apoptosis
Gene Name:
FABP6
Uniprot ID:
P51161
Molecular weight:
14371.2
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
  2. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  3. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]

Transporters

General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as 17-beta-glucuronosyl estradiol, taurocholate, triiodothyronine (T3), leukotriene C4, dehydroepiandrosterone sulfate (DHEAS), methotrexate and sulfobromophthalein (BSP)
Gene Name:
SLCO1B3
Uniprot ID:
Q9NPD5
Molecular weight:
77402.2
References
  1. Cui Y, Konig J, Leier I, Buchholz U, Keppler D: Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626-30. Epub 2000 Dec 27. [PubMed:11134001 ]
  2. Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001 Feb;120(2):525-33. [PubMed:11159893 ]
  3. Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Date F, Ono K, Kondo Y, Shiiba K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S: LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001 Jun;120(7):1689-99. [PubMed:11375950 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent high affinity transport of organic anions such as the thyroid hormones thyroxine (T4) and rT3. Other potential substrates, such as triiodothyronine (T3), 17-beta-glucuronosyl estradiol, estrone-3-sulfate and sulfobromophthalein (BSP) are transported with much lower efficiency
Gene Name:
SLCO1C1
Uniprot ID:
Q9NYB5
Molecular weight:
78695.6
References
  1. Tohyama K, Kusuhara H, Sugiyama Y: Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology. 2004 Sep;145(9):4384-91. Epub 2004 May 27. [PubMed:15166123 ]
  2. Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ: Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol. 2002 Oct;16(10):2283-96. [PubMed:12351693 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. May play an important role in the clearance of bile acids and organic anions from the liver
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular weight:
76448.0
References
  1. Michalski C, Cui Y, Nies AT, Nuessler AK, Neuhaus P, Zanger UM, Klein K, Eichelbaum M, Keppler D, Konig J: A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J Biol Chem. 2002 Nov 8;277(45):43058-63. Epub 2002 Aug 23. [PubMed:12196548 ]
  2. Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81. [PubMed:12235261 ]
  3. Nozawa T, Tamai I, Sai Y, Nezu J, Tsuji A: Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J Pharm Pharmacol. 2003 Jul;55(7):1013-20. [PubMed:12906759 ]
  4. Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem. 1999 Dec 24;274(52):37161-8. [PubMed:10601278 ]
  5. Cui Y, Konig J, Leier I, Buchholz U, Keppler D: Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626-30. Epub 2000 Dec 27. [PubMed:11134001 ]
  6. Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, Nomura H, Unno M, Suzuki M, Naitoh T, Matsuno S, Yawo H: Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999 Jun 11;274(24):17159-63. [PubMed:10358072 ]
General function:
Involved in transmembrane transport
Specific function:
Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate
Gene Name:
SLC16A1
Uniprot ID:
P53985
Molecular weight:
53957.7
References
  1. Tamai I, Sai Y, Ono A, Kido Y, Yabuuchi H, Takanaga H, Satoh E, Ogihara T, Amano O, Izeki S, Tsuji A: Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1. J Pharm Pharmacol. 1999 Oct;51(10):1113-21. [PubMed:10579682 ]
General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81. [PubMed:12235261 ]
General function:
Involved in ATP binding
Specific function:
Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o- glucuronide, methotrexate, antiviral drugs and other xenobiotics. Confers resistance to anticancer drugs. Hydrolyzes ATP with low efficiency
Gene Name:
ABCC1
Uniprot ID:
P33527
Molecular weight:
171589.5
References
  1. Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81. [PubMed:12235261 ]
  2. Heijn M, Hooijberg JH, Scheffer GL, Szabo G, Westerhoff HV, Lankelma J: Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport. Biochim Biophys Acta. 1997 May 22;1326(1):12-22. [PubMed:9188796 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as taurocholate, the prostaglandins PGD2, PGE1, PGE2, leukotriene C4, thromboxane B2 and iloprost
Gene Name:
SLCO2B1
Uniprot ID:
O94956
Molecular weight:
76697.9
References
  1. Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I: Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J Pharmacol Exp Ther. 2004 Feb;308(2):438-45. Epub 2003 Nov 10. [PubMed:14610227 ]
  2. Satoh H, Yamashita F, Tsujimoto M, Murakami H, Koyabu N, Ohtani H, Sawada Y: Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab Dispos. 2005 Apr;33(4):518-23. Epub 2005 Jan 7. [PubMed:15640378 ]
  3. Nishio T, Adachi H, Nakagomi R, Tokui T, Sato E, Tanemoto M, Fujiwara K, Okabe M, Onogawa T, Suzuki T, Nakai D, Shiiba K, Suzuki M, Ohtani H, Kondo Y, Unno M, Ito S, Iinuma K, Nunoki K, Matsuno S, Abe T: Molecular identification of a rat novel organic anion transporter moat1, which transports prostaglandin D(2), leukotriene C(4), and taurocholate. Biochem Biophys Res Commun. 2000 Sep 7;275(3):831-8. [PubMed:10973807 ]
General function:
Involved in ATP binding
Specific function:
May act as an inducible transporter in the biliary and intestinal excretion of organic anions. Acts as an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes
Gene Name:
ABCC3
Uniprot ID:
O15438
Molecular weight:
169341.1
References
  1. Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD: Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001 Oct 1;61(19):7225-32. [PubMed:11585759 ]
  2. Zelcer N, Saeki T, Bot I, Kuil A, Borst P: Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem J. 2003 Jan 1;369(Pt 1):23-30. [PubMed:12220224 ]
  3. Zhang DW, Gu HM, Vasa M, Muredda M, Cole SP, Deeley RG: Characterization of the role of polar amino acid residues within predicted transmembrane helix 17 in determining the substrate specificity of multidrug resistance protein 3. Biochemistry. 2003 Aug 26;42(33):9989-10000. [PubMed:12924948 ]
  4. Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y: ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem. 2000 Jan 28;275(4):2905-10. [PubMed:10644759 ]
  5. Li T, Ito K, Horie T: Transport of fluorescein methotrexate by multidrug resistance-associated protein 3 in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol. 2003 Sep;285(3):G602-10. [PubMed:12909565 ]
  6. Akita H, Suzuki H, Hirohashi T, Takikawa H, Sugiyama Y: Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm Res. 2002 Jan;19(1):34-41. [PubMed:11837698 ]
General function:
Involved in ATP binding
Specific function:
Involved in the ATP-dependent secretion of bile salts into the canaliculus of hepatocytes
Gene Name:
ABCB11
Uniprot ID:
O95342
Molecular weight:
146405.8
References
  1. Hartmann G, Cheung AK, Piquette-Miller M: Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther. 2002 Oct;303(1):273-81. [PubMed:12235261 ]
  2. Wolters H, Elzinga BM, Baller JF, Boverhof R, Schwarz M, Stieger B, Verkade HJ, Kuipers F: Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. J Hepatol. 2002 Nov;37(5):556-63. [PubMed:12399219 ]
  3. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ: The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. 2002 Nov;123(5):1649-58. [PubMed:12404239 ]
  4. Noe J, Hagenbuch B, Meier PJ, St-Pierre MV: Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology. 2001 May;33(5):1223-31. [PubMed:11343252 ]
  5. Mendoza ME, Monte MJ, Serrano MA, Pastor-Anglada M, Stieger B, Meier PJ, Medarde M, Marin JJ: Physiological characteristics of allo-cholic acid. J Lipid Res. 2003 Jan;44(1):84-92. [PubMed:12518026 ]
  6. Green RM, Hoda F, Ward KL: Molecular cloning and characterization of the murine bile salt export pump. Gene. 2000 Jan 4;241(1):117-23. [PubMed:10607905 ]
  7. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35. [PubMed:10617675 ]
  8. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ: The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998 Apr 17;273(16):10046-50. [PubMed:9545351 ]
  9. Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, Gasser R: Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology. 2001 Oct 5;167(1):83-98. [PubMed:11557132 ]
  10. Akita H, Suzuki H, Ito K, Kinoshita S, Sato N, Takikawa H, Sugiyama Y: Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta. 2001 Mar 9;1511(1):7-16. [PubMed:11248200 ]
  11. Madon J, Hagenbuch B, Landmann L, Meier PJ, Stieger B: Transport function and hepatocellular localization of mrp6 in rat liver. Mol Pharmacol. 2000 Mar;57(3):634-41. [PubMed:10692506 ]
  12. Mita S, Suzuki H, Akita H, Stieger B, Meier PJ, Hofmann AF, Sugiyama Y: Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288(1):G159-67. Epub 2004 Aug 5. [PubMed:15297262 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Mazzanti R, Fantappie O, Kamimoto Y, Gatmaitan Z, Gentilini P, Arias IM: Bile acid inhibition of P-glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles. Hepatology. 1994 Jul;20(1 Pt 1):170-6. [PubMed:7912687 ]
  2. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35. [PubMed:10617675 ]

Only showing the first 10 proteins. There are 24 proteins in total.