You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2013-02-09 00:07:49 UTC
HMDB IDHMDB00054
Secondary Accession NumbersNone
Metabolite Identification
Common NameBilirubin
DescriptionBilirubin is a bile pigment that is a degradation product of heme. In particular, bilirubin is a yellow breakdown product of normal heme catabolism. Its levels are elevated in certain diseases and it is responsible for the yellow color of bruises. Bilirubin is an excretion product, and the body does not control levels. Bilirubin levels reflect the balance between production and excretion. Thus, there is no "normal" level of bilirubin. Bilirubin consists of an open chain of four pyrroles (tetrapyrrole); by contrast, the heme molecule is a closed ring of four pyrroles, called porphyrin. -- Wikipedia.
Structure
Thumb
Synonyms
  1. (4Z,15Z)-Bilirubin IXa
  2. (Z,Z)-Bilirubin IXa
  3. 1,10,19,22,23,24-Hexahydro-2,7,13,17-tetramethyl-1,19-dioxo-3,18-divinyl-Biline-8,12-dipropionate
  4. 1,10,19,22,23,24-Hexahydro-2,7,13,17-tetramethyl-1,19-dioxo-3,18-divinyl-Biline-8,12-dipropionic acid
  5. 2,17-Diethenyl-1,10,19,22,23,24-hexahydro-3,7,13,18-tetramethyl-1,19-dioxo-21H-Biline-8,12-dipropanoate
  6. 2,17-Diethenyl-1,10,19,22,23,24-hexahydro-3,7,13,18-tetramethyl-1,19-dioxo-21H-Biline-8,12-dipropanoic acid
  7. 3-(2-((3-(2-Carboxyethyl)-4-methyl-5-((3-methyl-5-oxo-4-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)methyl)-1H-pyrrol-2-yl)methyl)-4-methyl-5-((4-methyl-5-oxo-3-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)methyl)-1H-pyrrol-3-yl)propanoate
  8. 3-(2-((3-(2-Carboxyethyl)-4-methyl-5-((3-methyl-5-oxo-4-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)methyl)-1H-pyrrol-2-yl)methyl)-4-methyl-5-((4-methyl-5-oxo-3-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)methyl)-1H-pyrrol-3-yl)propanoic acid
  9. 3-(2-((3-(2-Carboxyethyl)-4-methyl-5-[(Z)-(3-methyl-5-oxo-4-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)methyl]-1H-pyrrol-2-yl)methyl)-4-methyl-5-[(Z)-(4-methyl-5-oxo-3-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene
  10. 3-[2-[[3-(2-Carboxyethyl)-5-[(3-ethenyl-4-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methyl]-5-[(4-ethenyl-3-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-3-yl]propanoate
  11. 3-[2-[[3-(2-Carboxyethyl)-5-[(3-ethenyl-4-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methyl]-5-[(4-ethenyl-3-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-3-yl]propanoic acid
  12. 3-[2-[[3-(2-Carboxyethyl)-5-[(Z)-(3-ethenyl-4-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methyl]-5-[(Z)-(4-ethenyl-3-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-3-yl]propanoate
  13. 3-[2-[[3-(2-Carboxyethyl)-5-[(Z)-(3-ethenyl-4-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methyl]-5-[(Z)-(4-ethenyl-3-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-3-yl]propanoic acid
  14. Bilirubin
  15. Bilirubin IX-alpha
  16. Cholerythrin
  17. Hematoidin
Chemical FormulaC33H36N4O6
Average Molecular Weight584.6621
Monoisotopic Molecular Weight584.263484904
IUPAC Name3-(2-{[3-(2-carboxyethyl)-5-{[(2Z)-4-ethenyl-3-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-2-yl]methyl}-5-{[(2Z)-3-ethenyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-3-yl)propanoic acid
Traditional IUPAC Namebilirubin
CAS Registry Number635-65-4
SMILES
CC1=C(C=C)\C(NC1=O)=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(CCC(O)=O)C(C)=C(N2)\C=C2/NC(=O)C(C=C)=C2C)N1
InChI Identifier
InChI=1S/C33H36N4O6/c1-7-20-19(6)32(42)37-27(20)14-25-18(5)23(10-12-31(40)41)29(35-25)15-28-22(9-11-30(38)39)17(4)24(34-28)13-26-16(3)21(8-2)33(43)36-26/h7-8,13-14,34-35H,1-2,9-12,15H2,3-6H3,(H,36,43)(H,37,42)(H,38,39)(H,40,41)/b26-13-,27-14-
InChI KeyBPYKTIZUTYGOLE-IFADSCNNSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAromatic Heteropolycyclic Compounds
ClassTetrapyrroles and Derivatives
Sub ClassBilirubins
Other Descriptors
  • Organic Compounds
Substituents
  • Carboxylic Acid
  • Dicarboxylic Acid Derivative
  • Dipyrrin
  • Pyrrole
Direct ParentBilirubins
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
Biofunction
  • Component of Porphyrin and chlorophyll metabolism
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.009 mg/mL at 25 °CNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0096 g/LALOGPS
logP3.22ALOGPS
logP3.12ChemAxon
logS-4.8ALOGPS
pKa (Strongest Acidic)4.03ChemAxon
pKa (Strongest Basic)-2.8ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area164.38ChemAxon
Rotatable Bond Count12ChemAxon
Refractivity168.9ChemAxon
Polarizability66.16ChemAxon
Spectra
Spectra1D NMR2D NMR
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Biofluid Locations
  • Bile
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Urine
Tissue Location
  • Bile Duct
  • Bone Marrow
  • Brain
  • Erythrocyte
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Lymph Node
  • Muscle
  • Myelin
  • Nerve Cells
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Reticulocyte
  • Skin
  • Spleen
  • Thyroid Gland
Pathways
NameSMPDB LinkKEGG Link
Porphyrin MetabolismSMP00024map00860
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified13.0 (5.0-21.0) uMAdult (>18 years old)Both
Normal
    • McPherson, Richar...
    • Louise M. Malark...
details
BloodDetected and Quantified15.2 +/- 2.0 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified8.0 +/- 0.9 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0 - 0.2 uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
UrineDetected and Quantified< 0.1 umol/mmol creatinineAdult (>18 years old)BothNormal
    • Tietz Clinical Gu...
details
UrineDetected and Quantified0.032 (0.0019-0.21) umol/mmol creatinineAdult (>18 years old)BothNormal
    • Geigy Scientific ...
    • West Cadwell, N.J...
    • Basel, Switzerlan...
details
UrineDetected and Quantified0.51-5.13 umol/mmol creatinineAdult (>18 years old)BothNormal
    • David F. Putnam C...
details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BileDetected and Quantified5000 (4300-5700) uMAdult (>18 years old)BothCrohn's disease details
BileDetected and Quantified2600 (2400-2800) uMAdult (>18 years old)BothGallstone disease details
BileDetected and Quantified4600 (3900-5300) uMAdult (>18 years old)Both
Crohn's disease
details
BileDetected and Quantified5900 (4300-7500) uMAdult (>18 years old)Both
Crohn's disease
details
BloodDetected and Quantified14.6 +/- 2.5 uMAdult (>18 years old)Both
Growth hormone deficiency
details
BloodDetected and Quantified8.80 +/- 1.22 uMAdult (>18 years old)Both
Growth hormone deficiency
details
BloodDetected and Quantified573.0 (291.0-855.0) uMChildren (1-13 years old)BothCrigler-Najjar syndrome Type I details
Cerebrospinal Fluid (CSF)Detected and Quantified17.3 +/- 12.4 uMAdult (>18 years old)Both
Cerebral Vasospasm
details
Associated Disorders and Diseases
Disease References
Cerebral vasospasm
  1. Pyne-Geithman GJ, Morgan CJ, Wagner K, Dulaney EM, Carrozzella J, Kanter DS, Zuccarello M, Clark JF: Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005 Aug;25(8):1070-7. Pubmed: 15789034
Crohn's disease
  1. Lapidus A, Akerlund JE, Einarsson C: Gallbladder bile composition in patients with Crohn 's disease. World J Gastroenterol. 2006 Jan 7;12(1):70-4. Pubmed: 16440420
Gallbladder disease
  1. Lapidus A, Akerlund JE, Einarsson C: Gallbladder bile composition in patients with Crohn 's disease. World J Gastroenterol. 2006 Jan 7;12(1):70-4. Pubmed: 16440420
Growth hormone deficiency
  1. Darzy KH, Murray RD, Gleeson HK, Pezzoli SS, Thorner MO, Shalet SM: The impact of short-term fasting on the dynamics of 24-hour growth hormone (GH) secretion in patients with severe radiation-induced GH deficiency. J Clin Endocrinol Metab. 2006 Mar;91(3):987-94. Epub 2005 Dec 29. Pubmed: 16384844
Crigler-Najjar syndrome type I
  1. MetaGene
Associated OMIM IDs
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB021886
KNApSAcK IDNot Available
Chemspider ID4444055
KEGG Compound IDC00486
BioCyc IDBILIRUBIN
BiGG ID35117
Wikipedia LinkBilirubin
NuGOwiki LinkHMDB00054
Metagene LinkHMDB00054
METLIN ID81
PubChem Compound5280352
PDB IDNot Available
ChEBI ID16990
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Randeberg LL, Roll EB, Nilsen LT, Christensen T, Svaasand LO: In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatr. 2005 Jan;94(1):65-71. Pubmed: 15858963
  2. Bayes Garcia R, Maldonado Lozano J, Molina Font JA: [Interrelation of bilirubin and free fatty acids in newborn infants with pathologic conditions] An Esp Pediatr. 1989 Jan;30(1):27-31. Pubmed: 2648917
  3. Yamamoto S, Kubo S, Hai S, Uenishi T, Yamamoto T, Shuto T, Takemura S, Tanaka H, Yamazaki O, Hirohashi K, Tanaka T: Hepatitis C virus infection as a likely etiology of intrahepatic cholangiocarcinoma. Cancer Sci. 2004 Jul;95(7):592-5. Pubmed: 15245596
  4. Kabicek P: Importance of serum bile acids determination in adolescents with juvenile hyperbilirubinaemia. Cent Eur J Public Health. 2004 Jun;12(2):102-9. Pubmed: 15242029
  5. Tiribelli C, Ostrow JD: New concepts in bilirubin and jaundice: report of the Third International Bilirubin Workshop, April 6-8, 1995, Trieste, Italy. Hepatology. 1996 Nov;24(5):1296-311. Pubmed: 8903413
  6. Zhan X, Wang SY, Wang L, Qu P: [Decreased peripheral nerve conduction velocity may be associated with lower-serum level of vitamin E in patients with infantile hepatitis syndrome] Zhonghua Er Ke Za Zhi. 2004 May;42(5):362-6. Pubmed: 15189696
  7. Deja M, Hildebrandt B, Ahlers O, Riess H, Wust P, Gerlach H, Kerner T: Goal-directed therapy of cardiac preload in induced whole-body hyperthermia. Chest. 2005 Aug;128(2):580-6. Pubmed: 16100141
  8. Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, Yonemura S, Yamagishi H, Keppler D, Tsukita S, Tsukita S: Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet. 2002 Jul;31(3):320-5. Epub 2002 Jun 17. Pubmed: 12068294
  9. Lin JM, Jiang CQ: [Clinical manifestation and ultrasonic characteristics of five patients with acute arsenic poisoning] Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2003 Dec;21(6):420-2. Pubmed: 14761351
  10. Azer SA: A multimedia CD-ROM tool to improve student understanding of bile salts and bilirubin metabolism: evaluation of its use in a medical hybrid PBL course. Adv Physiol Educ. 2005 Mar;29(1):40-50. Pubmed: 15718382
  11. Slusher TM, Angyo IA, Bode-Thomas F, Akor F, Pam SD, Adetunji AA, McLaren DW, Wong RJ, Vreman HJ, Stevenson DK: Transcutaneous bilirubin measurements and serum total bilirubin levels in indigenous African infants. Pediatrics. 2004 Jun;113(6):1636-41. Pubmed: 15173484
  12. Ciszowski K, Gomolka E, Jenner B: [The influence of the dose, time since ingestion and concentration of the xenobiotic on the clinical state and severity of liver damage with patients intoxicated with paracetamol] Przegl Lek. 2005;62(6):456-61. Pubmed: 16225094
  13. Sando M, Sato Y, Iwata S, Akita H, Sunakawa K: In vitro protein binding of teicoplanin to neonatal serum. J Infect Chemother. 2004 Oct;10(5):280-3. Pubmed: 16163462
  14. Danko I, Jia Z, Zhang G: Nonviral gene transfer into liver and muscle for treatment of hyperbilirubinemia in the gunn rat. Hum Gene Ther. 2004 Dec;15(12):1279-86. Pubmed: 15684703
  15. Kotal P, Van der Veere CN, Sinaasappel M, Elferink RO, Vitek L, Brodanova M, Jansen PL, Fevery J: Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr Res. 1997 Aug;42(2):195-200. Pubmed: 9262222
  16. Ochenashko OV, Volkova NA, Mazur SP, Somov AY, Fuller BJ, Petrenko AY: Cryopreserved fetal liver cell transplants support the chronic failing liver in rats with CCl4-induced cirrhosis. Cell Transplant. 2006;15(1):23-33. Pubmed: 16700327
  17. Lapidus A, Akerlund JE, Einarsson C: Gallbladder bile composition in patients with Crohn 's disease. World J Gastroenterol. 2006 Jan 7;12(1):70-4. Pubmed: 16440420
  18. Sikkel E, Pasman SA, Oepkes D, Kanhai HH, Vandenbussche FP: On the origin of amniotic fluid bilirubin. Placenta. 2004 May;25(5):463-8. Pubmed: 15081641
  19. Schmidt CM, Powell ES, Yiannoutsos CT, Howard TJ, Wiebke EA, Wiesenauer CA, Baumgardner JA, Cummings OW, Jacobson LE, Broadie TA, Canal DF, Goulet RJ Jr, Curie EA, Cardenes H, Watkins JM, Loehrer PJ, Lillemoe KD, Madura JA: Pancreaticoduodenectomy: a 20-year experience in 516 patients. Arch Surg. 2004 Jul;139(7):718-25; discussion 725-7. Pubmed: 15249403
  20. Nanjundaswamy S, Petrova A, Mehta R, Hegyi T: Transcutaneous bilirubinometry in preterm infants receiving phototherapy. Am J Perinatol. 2005 Apr;22(3):127-31. Pubmed: 15838745

Enzymes

General function:
Involved in heme oxygenase (decyclizing) activity
Specific function:
Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed.
Gene Name:
HMOX1
Uniprot ID:
P09601
Molecular weight:
32818.345
References
  1. Matsuoka Y, Masuda H, Yokoyama M, Kihara K: Protective effects of bilirubin against cyclophosphamide induced hemorrhagic cystitis in rats. J Urol. 2008 Mar;179(3):1160-6. Pubmed: 18206168
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme has glucuronidating capacity with steroid substrates such as 5-beta-androstane 3-alpha,17-beta-diol, estradiol, ADT, eugenol and bile acids. Only isoform 1 seems to be active.
Gene Name:
UGT2B28
Uniprot ID:
Q9BY64
Molecular weight:
38742.9
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4-nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid.
Gene Name:
UGT2B4
Uniprot ID:
P06133
Molecular weight:
60512.035
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate.
Gene Name:
UGT1A4
Uniprot ID:
P22310
Molecular weight:
60024.535
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT2B10
Uniprot ID:
P36537
Molecular weight:
60773.485
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Its unique specificity for 3,4-catechol estrogens and estriol suggests it may play an important role in regulating the level and activity of these potent and active estrogen metabolites. Is also active with androsterone, hyodeoxycholic acid and tetrachlorocatechol (in vitro).
Gene Name:
UGT2B7
Uniprot ID:
P16662
Molecular weight:
60720.15
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme displays activity toward several classes of xenobiotic substrates, including simple phenolic compounds, 7-hydroxylated coumarins, flavonoids, anthraquinones, and certain drugs and their hydroxylated metabolites. It also catalyzes the glucuronidation of endogenous estrogens and androgens.
Gene Name:
UGT2B15
Uniprot ID:
P54855
Molecular weight:
61035.815
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Active on odorants and seems to be involved in olfaction; it could help clear lipophilic odorant molecules from the sensory epithelium.
Gene Name:
UGT2A1
Uniprot ID:
Q9Y4X1
Molecular weight:
60771.605
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4-methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone.
Gene Name:
UGT1A1
Uniprot ID:
P22309
Molecular weight:
59590.91
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols.
Gene Name:
UGT1A9
Uniprot ID:
O60656
Molecular weight:
59940.495
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A8
Uniprot ID:
Q9HAW9
Molecular weight:
59741.035
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A3
Uniprot ID:
P35503
Molecular weight:
60337.835
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A10
Uniprot ID:
Q9HAW8
Molecular weight:
59809.075
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. The major substrates of this isozyme are eugenol > 4-methylumbelliferone > dihydrotestosterone (DHT) > androstane-3-alpha,17-beta-diol (3-alpha-diol) > testosterone > androsterone (ADT).
Gene Name:
UGT2B17
Uniprot ID:
O75795
Molecular weight:
61094.915
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols.
Gene Name:
UGT1A6
Uniprot ID:
P19224
Molecular weight:
60750.215
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A5
Uniprot ID:
P35504
Molecular weight:
60070.565
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT2B11
Uniprot ID:
O75310
Molecular weight:
61037.8
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A7
Uniprot ID:
Q9HAW7
Molecular weight:
59818.315
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in biliverdin reductase activity
Specific function:
Reduces the gamma-methene bridge of the open tetrapyrrole, biliverdin IX alpha, to bilirubin with the concomitant oxidation of a NADH or NADPH cofactor.
Gene Name:
BLVRA
Uniprot ID:
P53004
Molecular weight:
33428.225
Reactions
Bilirubin + NAD(P)(+) → Biliverdin + NAD(P)Hdetails
Bilirubin + NAD → Biliverdin + NADH + Hydrogen Iondetails
Bilirubin + NADP → Biliverdin + NADPH + Hydrogen Iondetails
General function:
Involved in catalytic activity
Specific function:
Broad specificity oxidoreductase that catalyzes the NADPH-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone). Contributes to heme catabolism and metabolizes linear tetrapyrroles. Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH. In the liver, converts biliverdin to bilirubin.
Gene Name:
BLVRB
Uniprot ID:
P30043
Molecular weight:
22119.215
Reactions
Bilirubin + NAD(P)(+) → Biliverdin + NAD(P)Hdetails
Bilirubin + NAD → Biliverdin + NADH + Hydrogen Iondetails
Bilirubin + NADP → Biliverdin + NADPH + Hydrogen Iondetails
General function:
Involved in transport
Specific function:
Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc
Gene Name:
ALB
Uniprot ID:
P02768
Molecular weight:
69365.9
References
  1. Oettl K, Stadlbauer V, Petter F, Greilberger J, Putz-Bankuti C, Hallstrom S, Lackner C, Stauber RE: Oxidative damage of albumin in advanced liver disease. Biochim Biophys Acta. 2008 Jul-Aug;1782(7-8):469-73. Epub 2008 May 1. Pubmed: 18498776
General function:
Involved in transport
Specific function:
Binds copper, nickel, and fatty acids as well as, and bilirubin less well than, serum albumin. Only a small percentage (less than 2%) of the human AFP shows estrogen-binding properties
Gene Name:
AFP
Uniprot ID:
P02771
Molecular weight:
68676.9
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (By similarity).
Gene Name:
UGT2A3
Uniprot ID:
Q6UWM9
Molecular weight:
60253.94
Reactions
Uridine diphosphate glucuronic acid + Bilirubin → Uridine 5'-diphosphate + Bilirubin diglucuronidedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Not Available
Gene Name:
UGT1A10
Uniprot ID:
Q5DT02
Molecular weight:
59809.1
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Not Available
Gene Name:
UGT1A8
Uniprot ID:
Q5DSZ6
Molecular weight:
59741.0
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Not Available
Gene Name:
UGT1A7
Uniprot ID:
Q5DSZ7
Molecular weight:
59818.3

Transporters

General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. May play an important role in the clearance of bile acids and organic anions from the liver
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular weight:
76448.0
References
  1. Zhang W, He YJ, Gan Z, Fan L, Li Q, Wang A, Liu ZQ, Deng S, Huang YF, Xu LY, Zhou HH: OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin Exp Pharmacol Physiol. 2007 Dec;34(12):1240-4. Pubmed: 17973861
General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Watanabe N, Takashimizu S, Kojima S, Kagawa T, Nishizaki Y, Mine T, Matsuzaki S: Clinical and pathological features of a prolonged type of acute intrahepatic cholestasis. Hepatol Res. 2007 Aug;37(8):598-607. Epub 2007 May 22. Pubmed: 17517076