You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2014-11-03 18:55:35 UTC
HMDB IDHMDB00108
Secondary Accession NumbersNone
Metabolite Identification
Common NameEthanol
DescriptionEthanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4%. A blood level of 0.5% or more is commonly fatal. Levels of even less than 0.1% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 %. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system.
Structure
Thumb
Synonyms
  1. 1-Hydroxyethane
  2. Absolute alcohol
  3. Absolute ethanol
  4. Absolute ethyl alcohol
  5. Aethanol
  6. Aethylalkohol
  7. Alcare Hand Degermer
  8. Alcohol
  9. Alcohols
  10. Alcool ethylique
  11. Alcool etilico
  12. Algrain
  13. Alkohol
  14. Alkoholu etylowego
  15. Anhydrol
  16. Anhydrous alcohol
  17. Cologne spirit
  18. Cologne spirits
  19. Dehydrated alcohol
  20. Dehydrated ethanol
  21. Denatured alcohol
  22. Denatured ethanol
  23. Desinfektol EL
  24. Diluted Alcohol
  25. Distilled spirits
  26. Ethanol 200 proof
  27. Ethanol solution
  28. Ethicap
  29. Ethyl alc
  30. Ethyl alcohol
  31. Ethyl alcohol anhydrous
  32. Ethyl alcohol in alcoholic beverages
  33. Ethyl alcohol usp
  34. Ethyl hydrate
  35. Ethyl hydroxide
  36. Fermentation alcohol
  37. Grain alcohol
  38. Hinetoless
  39. Hydroxyethane
  40. Infinity Pure
  41. Jaysol
  42. Jaysol S
  43. Lux
  44. Methylcarbinol
  45. Molasses alcohol
  46. Potato alcohol
  47. Punctilious ethyl alcohol
  48. Pyro
  49. Silent spirit
  50. Spirit
  51. Spirits of wine
  52. Spirt
  53. Synasol
  54. Tecsol
  55. Tecsol C
  56. Thanol
  57. Undenatured Ethanol
Chemical FormulaC2H6O
Average Molecular Weight46.0684
Monoisotopic Molecular Weight46.041864814
IUPAC Nameethanol
Traditional Nameethyl alcohol
CAS Registry Number64-17-5
SMILES
CCO
InChI Identifier
InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3
InChI KeyLFQSCWFLJHTTHZ-UHFFFAOYSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAliphatic Acyclic Compounds
ClassAlcohols and Polyols
Sub ClassPrimary Alcohols
Other Descriptors
  • Aliphatic Acyclic Compounds
  • a primary alcohol(Cyc)
  • a short-chain alcohol(Cyc)
  • alkyl alcohol(ChEBI)
  • ethanols(ChEBI)
  • primary alcohol(ChEBI)
Substituents
  • N/A
Direct ParentPrimary Alcohols
Ontology
StatusDetected and Quantified
Origin
  • Food
Biofunction
  • Component of Androgen and estrogen metabolism
  • Component of Bile acid biosynthesis
  • Component of C21-Steroid hormone metabolism
  • Component of Fatty acid metabolism
  • Component of Glycerolipid metabolism
  • Component of Sulfur metabolism
  • Component of Tyrosine metabolism
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Extracellular
  • Peroxisome
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-114.1 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility1000.0 mg/mLNot Available
LogP-0.31HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility579.0ALOGPS
logP-0.4ALOGPS
logP-0.16ChemAxon
logS1.1ALOGPS
pKa (Strongest Acidic)16.47ChemAxon
pKa (Strongest Basic)-2.2ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity13.01 m3·mol-1ChemAxon
Polarizability5.3 Å3ChemAxon
Spectra
SpectraMS/MSMS1D NMR2D NMR
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Peroxisome
Biofluid Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Saliva
  • Urine
Tissue Location
  • Adipose Tissue
  • Adrenal Cortex
  • Adrenal Gland
  • Adrenal Medulla
  • Bladder
  • Brain
  • Epidermis
  • Fetus
  • Fibroblasts
  • Gonads
  • Gut
  • Heart
  • Intestine
  • Kidney
  • Liver
  • Lung
  • Mouth
  • Muscle
  • Myelin
  • Nerve Cells
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
Pathways
NameSMPDB LinkKEGG Link
Ethanol DegradationSMP00449Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified40.0 (0.0-80.0) uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified15.0 (0.0-33.0) uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
SalivaDetected but not QuantifiedNot ApplicableChildren (1-13 years old)BothNormal details
SalivaDetected and Quantified68.67 +/- 43.27 uMAdult (>18 years old)BothNormal
    • Dame, ZT. et al. ...
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Not SpecifiedNormal details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Not SpecifiedNormal details
SalivaDetected and Quantified>10 uMAdult (>18 years old)BothNormal details
UrineDetected and Quantified<0.01 umol/mmol creatinineAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.0105 umol/mmol creatinineAdult (>18 years old)BothNormal details
UrineDetected and Quantified3.1 umol/mmol creatinineAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified40.2 +/- 12.1 uMAdult (>18 years old)Not SpecifiedHeart Transplant details
BloodDetected and Quantified45393.0 (18027.0-74063.0) uMAdult (>18 years old)BothAlcohol intoxication details
BloodDetected and Quantified40615.0 +/- 17158.0 uMAdult (>18 years old)MaleDrunk driver details
BloodDetected and Quantified90.0 (10.0-170.0) uMAdult (>18 years old)Both
Kidney disease
details
Cerebrospinal Fluid (CSF)Detected and Quantified230 +/- 30 uMAdult (>18 years old)Not SpecifiedCervical myelopathy details
SalivaDetected but not QuantifiedNot ApplicableChildren (1-13 years old)BothCeliac disease details
UrineDetected and Quantified54.0 (0.0-661.0) umol/mmol creatinineNot SpecifiedBothLung cancer details
UrineDetected and Quantified0.0039 - 0.0617 umol/mmol creatinineAdult (>18 years old)BothADPKD details
UrineDetected and Quantified3543.6 +/- 1414.6 umol/mmol creatinineAdult (>18 years old)MaleDrunk driver details
UrineDetected and Quantified5-500 umol/mmol creatinineAdult (>18 years old)Both
after 4 -5 hours of Alcohol consumption
details
Associated Disorders and Diseases
Disease References
Alcoholism
  1. Jones AW, Lund M, Andersson E: Drinking drivers in Sweden who consume denatured alcohol preparations: an analytical-toxicological study. J Anal Toxicol. 1989 Jul-Aug;13(4):199-203. Pubmed: 2779169
  2. Jones AW, Helander A: Changes in the concentrations of ethanol, methanol and metabolites of serotonin in two successive urinary voids from drinking drivers. Forensic Sci Int. 1998 May 11;93(2-3):127-34. Pubmed: 9717263
Cervical myelopathy
  1. Meshitsuka S, Morio Y, Nagashima H, Teshima R: 1H-NMR studies of cerebrospinal fluid: endogenous ethanol in patients with cervical myelopathy. Clin Chim Acta. 2001 Oct;312(1-2):25-30. Pubmed: 11580906
Kidney disease
  1. Liebich HM, Woll J: Volatile substances in blood serum: profile analysis and quantitative determination. J Chromatogr. 1977 Nov 11;142:505-16. Pubmed: 914932
Lung Cancer
  1. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2008 Oct 25. Pubmed: 18953024
Abnormal
  1. Schneider H, Glatt H: Sulpho-conjugation of ethanol in humans in vivo and by individual sulphotransferase forms in vitro. Biochem J. 2004 Nov 1;383(Pt. 3):543-9. Pubmed: 15281911
Associated OMIM IDs
DrugBank IDDB00898
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB000753
KNApSAcK IDC00019560
Chemspider ID682
KEGG Compound IDC00469
BioCyc IDETOH
BiGG ID35062
Wikipedia LinkEthanol
NuGOwiki LinkHMDB00108
Metagene LinkHMDB00108
METLIN ID3203
PubChem Compound702
PDB IDEOH
ChEBI ID16236
References
Synthesis ReferenceLashley, David. Process for producing an alcoholic sugar cane juice beverage. U.S. (1988), 3 pp. CODEN: USXXAM US 4784859 A 19881115 CAN 110:113222 AN 1989:113222
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. Pubmed: 12097436
  2. Gordon Z, Parsons CL, Monga M: Intravesical ethanol test: an ineffective measure of bladder hyperpermeability. Urology. 2003 Mar;61(3):555-7. Pubmed: 12639646
  3. Huang JS, She QB, Crilly KS, Kiss Z: Ethanol, Zn2+ and insulin interact as progression factors to enhance DNA synthesis synergistically in the presence of Ca2+ and other cell cycle initiators in fibroblasts. Biochem J. 2000 Feb 15;346 Pt 1:241-7. Pubmed: 10657263
  4. Friedman GD, Klatsky AL, Siegelaub AB: Alcohol, tobacco, and hypertension. Hypertension. 1982 Sep-Oct;4(5 Pt 2):III143-50. Pubmed: 7049929
  5. Uemura M, Lehmann WD, Schneider W, Seitz HK, Benner A, Keppler-Hafkemeyer A, Hafkemeyer P, Kojima H, Fujimoto M, Tsujii T, Fukui H, Keppler D: Enhanced urinary excretion of cysteinyl leukotrienes in patients with acute alcohol intoxication. Gastroenterology. 2000 Jun;118(6):1140-8. Pubmed: 10833489
  6. Hemmingsen R, Barry DI, Hertz MM, Klinken L: Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat. Brain Res. 1979 Sep 14;173(2):259-69. Pubmed: 573652
  7. Lopez JM, Bombi JA, Valderrama R, Gimenez A, Pares A, Caballeria J, Imperial S, Navarro S: Effects of prolonged ethanol intake and malnutrition on rat pancreas. Gut. 1996 Feb;38(2):285-92. Pubmed: 8801213
  8. Yamashina S, Ikejima K, Enomoto N, Takei Y, Sato N: [Ethanol changes sensitivity of Kupffer cells to endotoxin] Nihon Arukoru Yakubutsu Igakkai Zasshi. 2003 Oct;38(5):415-24. Pubmed: 14639920
  9. Aye MM, Ma C, Lin H, Bower KA, Wiggins RC, Luo J: Ethanol-induced in vitro invasion of breast cancer cells: the contribution of MMP-2 by fibroblasts. Int J Cancer. 2004 Dec 10;112(5):738-46. Pubmed: 15386367
  10. De Martinis BS, de Paula CM, Braga A, Moreira HT, Martin CC: Alcohol distribution in different postmortem body fluids. Hum Exp Toxicol. 2006 Feb;25(2):93-7. Pubmed: 16539214
  11. Pohorecky LA: Influence of alcohol on peripheral neurotransmitter function. Fed Proc. 1982 Jun;41(8):2452-5. Pubmed: 6123447
  12. Dean RA, Zhang J, Brzezinski MR, Bosron WF: Tissue distribution of cocaine methyl esterase and ethyl transferase activities: correlation with carboxylesterase protein. J Pharmacol Exp Ther. 1995 Nov;275(2):965-71. Pubmed: 7473189
  13. Elias AN, Meshkinpour H, Valenta LJ, Grossman MK: Pseudo-Cushing's syndrome: the role of alcohol. J Clin Gastroenterol. 1982 Apr;4(2):137-9. Pubmed: 6282953
  14. Henriksson J, Knol M: A single bout of exercise is followed by a prolonged decrease in the interstitial glucose concentration in skeletal muscle. Acta Physiol Scand. 2005 Dec;185(4):313-20. Pubmed: 16266372
  15. Rosdahl H, Lind L, Millgard J, Lithell H, Ungerstedt U, Henriksson J: Effect of physiological hyperinsulinemia on blood flow and interstitial glucose concentration in human skeletal muscle and adipose tissue studied by microdialysis. Diabetes. 1998 Aug;47(8):1296-301. Pubmed: 9703331
  16. Boschmann M, Adams F, Schaller K, Franke G, Sharma AM, Klaus S, Luft FC, Jordan J: Hemodynamic and metabolic responses to interstitial angiotensin II in normal weight and obese men. J Hypertens. 2006 Jun;24(6):1165-71. Pubmed: 16685217
  17. Igawa Y, Satoh T, Mizusawa H, Seki S, Kato H, Ishizuka O, Nishizawa O: The role of capsaicin-sensitive afferents in autonomic dysreflexia in patients with spinal cord injury. BJU Int. 2003 May;91(7):637-41. Pubmed: 12699475
  18. Enocksson S, Shimizu M, Lonnqvist F, Nordenstrom J, Arner P: Demonstration of an in vivo functional beta 3-adrenoceptor in man. J Clin Invest. 1995 May;95(5):2239-45. Pubmed: 7738189
  19. Collins JW, Macdermott S, Bradbrook RA, Keeley FX Jr, Timoney AG: Is using ethanol-glycine irrigating fluid monitoring and 'good surgical practice' enough to prevent harmful absorption during transurethral resection of the prostate? BJU Int. 2006 Jun;97(6):1247-51. Pubmed: 16686720
  20. Sokolik VV, Chursina VS, Artemchuk AA, Artemchuk AF, Bozhko GKh: [Depression of serum esterase and lipoprotein lipase activities in acute and longitudinal actions of ethanol] Biomed Khim. 2006 Jan-Feb;52(1):95-100. Pubmed: 16739925
  21. Snyder R, Kalf GF: A perspective on benzene leukemogenesis. Crit Rev Toxicol. 1994;24(3):177-209. Pubmed: 7945890
  22. McDonnell G, Russell AD: Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999 Jan;12(1):147-79. Pubmed: 9880479
  23. Barceloux DG, Bond GR, Krenzelok EP, Cooper H, Vale JA: American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol. 2002;40(4):415-46. Pubmed: 12216995
  24. Hingson R, Winter M: Epidemiology and consequences of drinking and driving. Alcohol Res Health. 2003;27(1):63-78. Pubmed: 15301401
  25. Chastain G: Alcohol, neurotransmitter systems, and behavior. J Gen Psychol. 2006 Oct;133(4):329-35. Pubmed: 17128954

Only showing the first 50 proteins. There are 52 proteins in total.

Enzymes

General function:
Involved in arylesterase activity
Specific function:
Has low activity towards the organophosphate paraxon and aromatic carboxylic acid esters. Rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). Hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents.
Gene Name:
PON3
Uniprot ID:
Q15166
Molecular weight:
39607.185
General function:
Involved in arylesterase activity
Specific function:
Hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. Capable of hydrolyzing a broad spectrum of organophosphate substrates and lactones, and a number of aromatic carboxylic acid esters. Mediates an enzymatic protection of low density lipoproteins against oxidative modification and the consequent series of events leading to atheroma formation.
Gene Name:
PON1
Uniprot ID:
P27169
Molecular weight:
39730.99
General function:
Involved in arylesterase activity
Specific function:
Capable of hydrolyzing lactones and a number of aromatic carboxylic acid esters. Has antioxidant activity. Is not associated with high density lipoprotein. Prevents LDL lipid peroxidation, reverses the oxidation of mildly oxidized LDL, and inhibits the ability of MM-LDL to induce monocyte chemotaxis.
Gene Name:
PON2
Uniprot ID:
Q15165
Molecular weight:
39380.535
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
ALPI
Uniprot ID:
P09923
Molecular weight:
56811.695
General function:
Involved in acid phosphatase activity
Specific function:
Not Available
Gene Name:
ACP2
Uniprot ID:
P11117
Molecular weight:
48343.92
General function:
Involved in catalytic activity
Specific function:
This isozyme may play a role in skeletal mineralization.
Gene Name:
ALPL
Uniprot ID:
P05186
Molecular weight:
57304.435
General function:
Involved in hydrolase activity
Specific function:
Involved in osteopontin/bone sialoprotein dephosphorylation. Its expression seems to increase in certain pathological states such as Gaucher and Hodgkin diseases, the hairy cell, the B-cell, and the T-cell leukemias.
Gene Name:
ACP5
Uniprot ID:
P13686
Molecular weight:
36598.47
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
ALPPL2
Uniprot ID:
P10696
Molecular weight:
57376.515
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ALDH2
Uniprot ID:
P05091
Molecular weight:
56380.93
General function:
Involved in oxidoreductase activity
Specific function:
ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation.
Gene Name:
ALDH1B1
Uniprot ID:
P30837
Molecular weight:
57248.96
General function:
Involved in sulfotransferase activity
Specific function:
Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs and xenobiotic compounds. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Sulfates hydroxysteroids like DHEA. Isoform 1 preferentially sulfonates cholesterol, and isoform 2 avidly sulfonates pregnenolone but not cholesterol.
Gene Name:
SULT2B1
Uniprot ID:
O00204
Molecular weight:
39598.595
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).
Gene Name:
CYP4A11
Uniprot ID:
Q02928
Molecular weight:
59347.31
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in zinc ion binding
Specific function:
Converts sorbitol to fructose. Part of the polyol pathway that plays an important role in sperm physiology. May play a role in the sperm motility by providing an energetic source for sperm (By similarity).
Gene Name:
SORD
Uniprot ID:
Q00796
Molecular weight:
38324.25
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols. Catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Has broad substrate specificity. In vitro substrates include succinic semialdehyde, 4-nitrobenzaldehyde, 1,2-naphthoquinone, methylglyoxal, and D-glucuronic acid. Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN).
Gene Name:
AKR1A1
Uniprot ID:
P14550
Molecular weight:
36572.71
Reactions
Ethanol + NADP → Acetaldehyde + NADPH + Hydrogen Iondetails
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH4
Uniprot ID:
P08319
Molecular weight:
40221.335
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ALDH3B2
Uniprot ID:
P48448
Molecular weight:
42623.62
General function:
Involved in oxidoreductase activity
Specific function:
Oxidizes medium and long chain saturated and unsaturated aldehydes. Metabolizes also benzaldehyde. Low activity towards acetaldehyde and 3,4-dihydroxyphenylacetaldehyde. May not metabolize short chain aldehydes. May use both NADP(+) and NAD(+) as cofactors. May have a protective role against the cytotoxicity induced by lipid peroxidation.
Gene Name:
ALDH3B1
Uniprot ID:
P43353
Molecular weight:
51839.245
General function:
Involved in zinc ion binding
Specific function:
Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione.
Gene Name:
ADH5
Uniprot ID:
P11766
Molecular weight:
39723.945
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in thiosulfate sulfurtransferase activity
Specific function:
Transfer of a sulfur ion to cyanide or to other thiol compounds. Also has weak rhodanese activity. May have a role in cyanide degradation or in thiosulfate biosynthesis.
Gene Name:
MPST
Uniprot ID:
P25325
Molecular weight:
33178.15
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH1B
Uniprot ID:
P00325
Molecular weight:
39835.17
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
References
  1. Hernandez-Tobias A, Julian-Sanchez A, Pina E, Riveros-Rosas H: Natural alcohol exposure: is ethanol the main substrate for alcohol dehydrogenases in animals? Chem Biol Interact. 2011 May 30;191(1-3):14-25. Epub 2011 Feb 15. Pubmed: 21329681
  2. Matsumoto M, Cyganek I, Sanghani PC, Cho WK, Liangpunsakul S, Crabb DW: Ethanol metabolism by HeLa cells transduced with human alcohol dehydrogenase isoenzymes: control of the pathway by acetaldehyde concentration. Alcohol Clin Exp Res. 2011 Jan;35(1):28-38. doi: 10.1111/j.1530-0277.2010.01319.x. Pubmed: 21166830
  3. Nishimura FT, Kimura Y, Abe S, Fukunaga T, Saijoh K: Effects of polymorphisms in untranslated regions of the class I alcohol dehydrogenase (ADH) genes on alcohol metabolism in Japanese subjects and transcriptional activity in HepG2 cells. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2009 Jun;44(3):139-55. Pubmed: 19618839
  4. Jelski W, Kozlowski M, Laudanski J, Niklinski J, Szmitkowski M: The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in esophageal cancer. Dig Dis Sci. 2009 Apr;54(4):725-30. Epub 2008 Aug 9. Pubmed: 18688716
General function:
Involved in zinc ion binding
Specific function:
Could function in retinol oxidation for the synthesis of retinoic acid, a hormone important for cellular differentiation. Medium-chain (octanol) and aromatic (m-nitrobenzaldehyde) compounds are the best substrates. Ethanol is not a good substrate but at the high ethanol concentrations reached in the digestive tract, it plays a role in the ethanol oxidation and contributes to the first pass ethanol metabolism.
Gene Name:
ADH7
Uniprot ID:
P40394
Molecular weight:
41480.985
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH1A
Uniprot ID:
P07327
Molecular weight:
39858.37
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
References
  1. Hernandez-Tobias A, Julian-Sanchez A, Pina E, Riveros-Rosas H: Natural alcohol exposure: is ethanol the main substrate for alcohol dehydrogenases in animals? Chem Biol Interact. 2011 May 30;191(1-3):14-25. Epub 2011 Feb 15. Pubmed: 21329681
  2. Matsumoto M, Cyganek I, Sanghani PC, Cho WK, Liangpunsakul S, Crabb DW: Ethanol metabolism by HeLa cells transduced with human alcohol dehydrogenase isoenzymes: control of the pathway by acetaldehyde concentration. Alcohol Clin Exp Res. 2011 Jan;35(1):28-38. doi: 10.1111/j.1530-0277.2010.01319.x. Pubmed: 21166830
  3. Nishimura FT, Kimura Y, Abe S, Fukunaga T, Saijoh K: Effects of polymorphisms in untranslated regions of the class I alcohol dehydrogenase (ADH) genes on alcohol metabolism in Japanese subjects and transcriptional activity in HepG2 cells. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2009 Jun;44(3):139-55. Pubmed: 19618839
  4. Jelski W, Kozlowski M, Laudanski J, Niklinski J, Szmitkowski M: The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in esophageal cancer. Dig Dis Sci. 2009 Apr;54(4):725-30. Epub 2008 Aug 9. Pubmed: 18688716
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH6
Uniprot ID:
P28332
Molecular weight:
39072.275
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH1C
Uniprot ID:
P00326
Molecular weight:
39867.27
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails
References
  1. Hernandez-Tobias A, Julian-Sanchez A, Pina E, Riveros-Rosas H: Natural alcohol exposure: is ethanol the main substrate for alcohol dehydrogenases in animals? Chem Biol Interact. 2011 May 30;191(1-3):14-25. Epub 2011 Feb 15. Pubmed: 21329681
  2. Matsumoto M, Cyganek I, Sanghani PC, Cho WK, Liangpunsakul S, Crabb DW: Ethanol metabolism by HeLa cells transduced with human alcohol dehydrogenase isoenzymes: control of the pathway by acetaldehyde concentration. Alcohol Clin Exp Res. 2011 Jan;35(1):28-38. doi: 10.1111/j.1530-0277.2010.01319.x. Pubmed: 21166830
  3. Nishimura FT, Kimura Y, Abe S, Fukunaga T, Saijoh K: Effects of polymorphisms in untranslated regions of the class I alcohol dehydrogenase (ADH) genes on alcohol metabolism in Japanese subjects and transcriptional activity in HepG2 cells. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2009 Jun;44(3):139-55. Pubmed: 19618839
  4. Jelski W, Kozlowski M, Laudanski J, Niklinski J, Szmitkowski M: The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in esophageal cancer. Dig Dis Sci. 2009 Apr;54(4):725-30. Epub 2008 Aug 9. Pubmed: 18688716
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
Plays an important role in the degradation of dermatan and keratan sulfates.
Gene Name:
GUSB
Uniprot ID:
P08236
Molecular weight:
74731.46
General function:
Involved in alpha-L-fucosidase activity
Specific function:
Alpha-L-fucosidase is responsible for hydrolyzing the alpha-1,6-linked fucose joined to the reducing-end N-acetylglucosamine of the carbohydrate moieties of glycoproteins.
Gene Name:
FUCA2
Uniprot ID:
Q9BTY2
Molecular weight:
54066.31
General function:
Involved in zinc ion binding
Specific function:
Catalyzes the reduction of trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. May have a role in the mitochondrial synthesis of fatty acids.
Gene Name:
MECR
Uniprot ID:
Q9BV79
Molecular weight:
32228.0
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
  2. Lewis DF, Modi S, Dickins M: Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82. Pubmed: 11996013
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular weight:
58164.815
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in phosphatidylcholine-retinol O-acyltransfera
Specific function:
Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters. Retinyl esters are storage forms of vitamin A. LRAT plays a critical role in vision. It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis-retinaldehyde which is the chromophore for rhodopsin and the cone photopigments.
Gene Name:
LRAT
Uniprot ID:
O95237
Molecular weight:
25702.635
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element
Gene Name:
NR1I3
Uniprot ID:
Q14994
Molecular weight:
39942.1
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ZADH2
Uniprot ID:
Q8N4Q0
Molecular weight:
40140.1
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the cofactor-independent reversible oxidation of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG). D,L-3-hydroxyisobutyrate and L-3-hydroxybutyrate (L-3-OHB) are also substrates for HOT with 10-fold lower activities.
Gene Name:
ADHFE1
Uniprot ID:
Q8IWW8
Molecular weight:
50307.42
General function:
Involved in catalytic activity
Specific function:
Catalyzes the reduction of fatty acyl-CoA to fatty alcohols. The preferred substrates are C16, C18, C18:1 and C18:2 but low activity can be observed with C10-C14 substrates.
Gene Name:
FAR2
Uniprot ID:
Q96K12
Molecular weight:
59437.92
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Acyltransferase that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. Wax esters are enriched in sebum, suggesting that it plays a central role in lipid metabolism in skin. Has no activity using decyl alcohol and significantly prefers the C16 and C18 alcohols. May also have 2-acylglycerol O-acyltransferase (MGAT) and acyl-CoA:retinol acyltransferase (ARAT) activities, to catalyze the synthesis of diacylglycerols and retinyl esters; however this activity is unclear in vivo.
Gene Name:
AWAT2
Uniprot ID:
Q6E213
Molecular weight:
38093.25
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity). The Klotho peptide generated by cleavage of the membrane-bound isoform may be an anti-aging circulating hormone which would extend life span by inhibiting insulin/IGF1 signaling (By similarity).
Gene Name:
KL
Uniprot ID:
Q9UEF7
Molecular weight:
116179.815
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May play a role in PPP2CB-NMDAR mediated signaling mechanism
Gene Name:
GRIN3A
Uniprot ID:
Q8TCU5
Molecular weight:
125464.1
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed: 17139284
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed: 17016423
  3. Wang J, Lanfranco MF, Gibb SL, Ron D: Ethanol-mediated long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum. Channels (Austin). 2011 May-Jun;5(3):205-9. Epub 2011 May 1. Pubmed: 21289476
  4. Ron D, Wang J: The NMDA Receptor and Alcohol Addiction Pubmed: 21204417
  5. Williams K: Extracellular Modulation of NMDA Receptors Pubmed: 21204407
  6. Xu M, Smothers CT, Woodward JJ: Effects of ethanol on phosphorylation site mutants of recombinant N-methyl-D-aspartate receptors. Alcohol. 2011 Jun;45(4):373-80. Epub 2010 Dec 15. Pubmed: 21163614
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular weight:
51801.4
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed: 17139284
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed: 17016423
  3. Santhakumar V, Wallner M, Otis TS: Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol. 2007 May;41(3):211-21. Pubmed: 17591544
  4. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed: 11752352
  5. Earl DE, Tietz EI: Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of GABAA receptors. J Pharmacol Exp Ther. 2011 Apr;337(1):301-11. Epub 2011 Jan 24. Pubmed: 21262851
General function:
Involved in ion transport
Specific function:
The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing)
Gene Name:
GLRA1
Uniprot ID:
P23415
Molecular weight:
52623.4
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed: 17139284
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed: 17016423
  3. Fuentealba J, Munoz B, Yevenes G, Moraga-Cid G, Perez C, Guzman L, Rigo JM, Aguayo LG: Potentiation and inhibition of glycine receptors by tutin. Neuropharmacology. 2011 Feb-Mar;60(2-3):453-9. Epub 2010 Oct 31. Pubmed: 21044637
  4. Baenziger JE, Corringer PJ: 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology. 2011 Jan;60(1):116-25. Epub 2010 Aug 14. Pubmed: 20713066
  5. Ye Q, Koltchine VV, Mihic SJ, Mascia MP, Wick MJ, Finn SE, Harrison NL, Harris RA: Enhancement of glycine receptor function by ethanol is inversely correlated with molecular volume at position alpha267. J Biol Chem. 1998 Feb 6;273(6):3314-9. Pubmed: 9452448
General function:
Involved in ion transport
Specific function:
The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing)
Gene Name:
GLRA2
Uniprot ID:
P23416
Molecular weight:
52001.6
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed: 17139284
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed: 17016423
  3. Ye Q, Koltchine VV, Mihic SJ, Mascia MP, Wick MJ, Finn SE, Harrison NL, Harris RA: Enhancement of glycine receptor function by ethanol is inversely correlated with molecular volume at position alpha267. J Biol Chem. 1998 Feb 6;273(6):3314-9. Pubmed: 9452448
  4. Baenziger JE, Corringer PJ: 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology. 2011 Jan;60(1):116-25. Epub 2010 Aug 14. Pubmed: 20713066
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates receptor tyrosine-protein kinase erbB-4 and inhibits the ligand-induced proteolytic cleavage.
Gene Name:
ACPT
Uniprot ID:
Q9BZG2
Molecular weight:
46089.015
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs (By similarity).
Gene Name:
CES5A
Uniprot ID:
Q6NT32
Molecular weight:
63925.82
General function:
Involved in acid phosphatase activity
Specific function:
Not Available
Gene Name:
ACPL2
Uniprot ID:
Q8TE99
Molecular weight:
55239.395
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
VAT1L
Uniprot ID:
Q9HCJ6
Molecular weight:
45899.2
General function:
Involved in zinc ion binding
Specific function:
May be involved in the generation of reactive oxygen species (ROS). Has low NADPH-dependent naphtoquinone reductase activity, with a preference for 1,2-naphtoquinone over 1,4- naphtoquinone. Has low NADPH-dependent diamine reductase activity (in vitro)
Gene Name:
TP53I3
Uniprot ID:
Q53FA7
Molecular weight:
35535.9

Only showing the first 50 proteins. There are 52 proteins in total.