You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected but not Quantified
Creation Date2008-10-29 14:26:36 UTC
Update Date2018-05-20 09:00:06 UTC
HMDB IDHMDB0011149
Secondary Accession Numbers
  • HMDB11149
Metabolite Identification
Common NameLysoPC(O-18:0)
Description1-Octadecyl-sn-glycero-3-phosphocholine is an intermediate in the ether lipid metabolism pathway. 1-Octadecyl-sn-glycero-3-phosphocholine is irreversibly produced from 2-acetyl-1-(9Z-octadecenyl)-sn-glycero-3-phosphocholine via the enzyme 1-alkyl-2-acetylglycerophosphocholine esterase (EC 3.1.1.47). 1-Octadecyl-sn-glycero-3-phosphocholine is an ether phospho-ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol are bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Structure
Thumb
Synonyms
ValueSource
1-O-Octadecylglycerol-3-phosphatidylcholineChEBI
1-Octadecyl-sn-glycero-3-phosphocholineChEBI
LPC (O-18:0)ChEBI
LysoPC(18:0E/0:0)ChEBI
PC(O-18:0/0:0)ChEBI
LysoPC(DM18:0)HMDB
LysoPC(O-18:0/0:0)HMDB
Chemical FormulaC26H56NO6P
Average Molecular Weight509.6997
Monoisotopic Molecular Weight509.384525041
IUPAC Name(2-{[(2R)-2-hydroxy-3-(octadecyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium
Traditional Name(2-{[(2R)-2-hydroxy-3-(octadecyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium
CAS Registry NumberNot Available
SMILES
[H][C@@](O)(COCCCCCCCCCCCCCCCCCC)COP([O-])(=O)OCC[N+](C)(C)C
InChI Identifier
InChI=1S/C26H56NO6P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-22-31-24-26(28)25-33-34(29,30)32-23-21-27(2,3)4/h26,28H,5-25H2,1-4H3/t26-/m1/s1
InChI KeyXKBJVQHMEXMFDZ-AREMUKBSSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as monoalkylglycerophosphocholines. These are compounds containing glycerophosphocholine moiety attached to an fatty acyl chain through an ether bond.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphocholines
Direct ParentMonoalkylglycerophosphocholines
Alternative Parents
Substituents
  • Monoalkylglycerophosphocholine
  • Phosphocholine
  • Glycerol ether
  • Dialkyl phosphate
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Quaternary ammonium salt
  • Tetraalkylammonium salt
  • Secondary alcohol
  • Ether
  • Dialkyl ether
  • Hydrocarbon derivative
  • Alcohol
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Amine
  • Organic salt
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect

Organoleptic effect:

Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.00027 g/LALOGPS
logP2.98ALOGPS
logP2.46ChemAxon
logS-6.3ALOGPS
pKa (Strongest Acidic)1.86ChemAxon
pKa (Strongest Basic)-3.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area88.05 ŲChemAxon
Rotatable Bond Count26ChemAxon
Refractivity151.72 m³·mol⁻¹ChemAxon
Polarizability62.7 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-000t-5930000000-c002f9346ff27ec388a3View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0002-9460000000-f8bf856a15fd2cd2fa22View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-01p9-9123230000-9e5018d60ea3b2b28b32View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0ugr-9455200000-0c72dc03f55ca1a4599eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0f79-9231000000-adbce76401a5b20f74d5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0010490000-78228db3f0e06f9d298cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0ar0-2160920000-56a3704799b8868294e2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00or-9280000000-a127711d12f38e903413View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Feces
Tissue LocationNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not Quantified Newborn (0-30 days old)Not Specified
Premature neonates
details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB027924
KNApSAcK IDNot Available
Chemspider ID2015318
KEGG Compound IDC04317
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound2733532
PDB IDNot Available
ChEBI ID75216
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  6. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 22 proteins in total.

Enzymes

General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined.
Gene Name:
PLA2G2D
Uniprot ID:
Q9UNK4
Molecular weight:
16546.1
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a preference for arachidonic-containing phospholipids.
Gene Name:
PLA2G2E
Uniprot ID:
Q9NZK7
Molecular weight:
15988.525
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Shows an 11-fold preference for phosphatidylglycerol over phosphatidylcholine (PC). Preferential cleavage: 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine (PE) > 1-palmitoyl-2-linoleoyl-PC > 1-palmitoyl-2-arachidonoyl-PC > 1-palmitoyl-2-arachidonoyl-PE. Plays a role in ciliogenesis.
Gene Name:
PLA2G3
Uniprot ID:
Q9NZ20
Molecular weight:
57166.51
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G1B
Uniprot ID:
P04054
Molecular weight:
16359.535
General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle.
Gene Name:
PLA2G5
Uniprot ID:
P39877
Molecular weight:
15674.065
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference.
Gene Name:
PLA2G2F
Uniprot ID:
Q9BZM2
Molecular weight:
23256.29
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine.
Gene Name:
PLA2G10
Uniprot ID:
O15496
Molecular weight:
18153.04
General function:
Involved in phospholipase A2 activity
Specific function:
Not known; does not seem to have catalytic activity.
Gene Name:
PLA2G12B
Uniprot ID:
Q9BX93
Molecular weight:
Not Available
General function:
Involved in metabolic process
Specific function:
Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position with a preference for arachidonoyl phospholipids. Has a much weaker activity than PLA2G4A. Isoform 3 has calcium-dependent activity against palmitoyl-arachidonyl-phosphatidylethanolamine and low level lysophospholipase activity but no activity against phosphatidylcholine. Isoform 5 does have activity against phosphatidylcholine.
Gene Name:
PLA2G4B
Uniprot ID:
P0C869
Molecular weight:
87977.02

Only showing the first 10 proteins. There are 22 proteins in total.