You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:52 UTC
Update Date2018-05-20 20:18:56 UTC
HMDB IDHMDB0015443
Secondary Accession Numbers
  • HMDB15443
Metabolite Identification
Common NameHeptabarbital
DescriptionHeptabarbital is only found in individuals that have used or taken this drug. It is an intermediate or short term barbiturate used mainly for sedation and hypnosis.Heptabarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Heptabarbital also appears to bind neuronal nicotinic acetylcholine receptors.
Structure
Thumb
Synonyms
ValueSource
HeptabarbChEMBL
HeptabarbitoneHMDB
HeptabarbumHMDB
HeptadormHMDB
HeptamalHMDB
HeptamalumHMDB
HeptbarbitalHMDB
MedapanHMDB
MedomineHMDB
Heptabarbital, monosodium saltMeSH
MedominMeSH
Chemical FormulaC13H18N2O3
Average Molecular Weight250.2936
Monoisotopic Molecular Weight250.131742452
IUPAC Name5-(cyclohept-1-en-1-yl)-5-ethyl-1,3-diazinane-2,4,6-trione
Traditional Nameheptabarbital
CAS Registry Number509-86-4
SMILES
CCC1(C(=O)NC(=O)NC1=O)C1=CCCCCC1
InChI Identifier
InChI=1S/C13H18N2O3/c1-2-13(9-7-5-3-4-6-8-9)10(16)14-12(18)15-11(13)17/h7H,2-6,8H2,1H3,(H2,14,15,16,17,18)
InChI KeyPAZQYDJGLKSCSI-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDiazines
Sub ClassPyrimidines and pyrimidine derivatives
Direct ParentBarbituric acid derivatives
Alternative Parents
Substituents
  • Barbiturate
  • N-acyl urea
  • Ureide
  • 1,3-diazinane
  • Dicarboximide
  • Urea
  • Carbonic acid derivative
  • Carboxylic acid derivative
  • Azacycle
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
Disposition

Biological location:

Role

Industrial application:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point174 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.32 g/LNot Available
LogP2.03HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility0.32 g/LALOGPS
logP2.41ALOGPS
logP1.91ChemAxon
logS-2.9ALOGPS
pKa (Strongest Acidic)8.14ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area75.27 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity66.25 m³·mol⁻¹ChemAxon
Polarizability25.86 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-0udi-0090000000-65df1d705dbf292d1920View in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-00di-7490000000-252904343000182d024dView in MoNA
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-0udi-0090000000-65df1d705dbf292d1920View in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-00di-7490000000-252904343000182d024dView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-05fr-4490000000-f676a100f3d6debe336fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-1190000000-9cf7406553f0c3090d2bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-001r-0920000000-354a96c2de9379d61ff7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0007-9100000000-b3896ac0c48273f3b1dcView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-052g-6290000000-4db48fb035bc3dc01a83View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0006-9520000000-b1174b032510d606f67bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-000x-9500000000-a779572754d9ebabf849View in MoNA
Biological Properties
Cellular Locations
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not Quantified Not AvailableNot AvailableTaking drug identified by DrugBank entry DB01354 details
UrineExpected but not Quantified Not AvailableNot AvailableTaking drug identified by DrugBank entry DB01354 details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01354
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID10081
KEGG Compound IDC17725
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkHeptabarb
METLIN IDNot Available
PubChem Compound10518
PDB IDNot Available
ChEBI ID588074
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in ionotropic glutamate receptor activity
Specific function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. May be involved in the transmission of light information from the retina to the hypothalamus. Modulates cell surface expression of NETO2
Gene Name:
GRIK2
Uniprot ID:
Q13002
Molecular weight:
102582.5
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist
Gene Name:
GRIA2
Uniprot ID:
P42262
Molecular weight:
98820.3
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular weight:
51801.4
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [PubMed:14579514 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  3. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  4. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular weight:
51325.9
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular weight:
55164.1
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular weight:
61622.6
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular weight:
52145.6
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular weight:
51023.7
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]