You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:02:20 UTC
HMDB IDHMDB00223
Secondary Accession NumbersNone
Metabolite Identification
Common NameOxalacetic acid
DescriptionOxaloacetic acid, also known as oxosuccinic acid or oxalacetic acid, is a four-carbon dicarboxylic acid appearing as an intermediate of the citric acid cycle. In vivo, oxaloacetate (the ionized form of oxaloacetic acid) is formed by the oxidation of L-malate, catalyzed by malate dehydrogenase, and reacts with Acetyl-CoA to form citrate, catalyzed by citrate synthase.(wikipedia) A class of ketodicarboxylic acids derived from oxalic acid. Oxaloacetic acid is an intermediate in the citric acid cycle and is converted to aspartic acidD by a transamination reaction.
Structure
Thumb
Synonyms
ValueSource
2-Oxobutanedioic acidChEBI
2-Oxosuccinic acidChEBI
3-Carboxy-3-oxopropanoic acidChEBI
keto-Succinic acidChEBI
Ketosuccinic acidChEBI
OAAChEBI
Oxalacetic acidChEBI
Oxobutanedioic acidChEBI
Oxosuccinic acidChEBI
2-OxobutanedioateGenerator
OxaloacetateGenerator
2-OxosuccinateGenerator
3-Carboxy-3-oxopropanoateGenerator
keto-SuccinateGenerator
KetosuccinateGenerator
OxalacetateGenerator
OxobutanedioateGenerator
OxosuccinateGenerator
2-KetosuccinateHMDB
2-Ketosuccinic acidHMDB
a-KetosuccinateHMDB
a-Ketosuccinic acidHMDB
alpha-KetosuccinateHMDB
alpha-Ketosuccinic acidHMDB
OxaloethanoateHMDB
Oxaloethanoic acidHMDB
Chemical FormulaC4H4O5
Average Molecular Weight132.0716
Monoisotopic Molecular Weight132.005873238
IUPAC Name2-oxobutanedioic acid
Traditional Nameoxalacetate
CAS Registry Number328-42-7
SMILES
OC(=O)CC(=O)C(O)=O
InChI Identifier
InChI=1S/C4H4O5/c5-2(4(8)9)1-3(6)7/h1H2,(H,6,7)(H,8,9)
InChI KeyInChIKey=KHPXUQMNIQBQEV-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassKeto acids and derivatives
Sub ClassShort-chain keto acids and derivatives
Direct ParentShort-chain keto acids and derivatives
Alternative Parents
Substituents
  • Short-chain keto acid
  • Beta-keto acid
  • 1,3-dicarbonyl compound
  • Dicarboxylic acid or derivatives
  • Beta-hydroxy ketone
  • Alpha-keto acid
  • Alpha-hydroxy ketone
  • Ketone
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
Biofunction
  • Component of Alanine and aspartate metabolism
  • Component of Arginine and proline metabolism
  • Component of Cysteine metabolism
  • Component of Glutamate metabolism
  • Component of Glyoxylate and dicarboxylate metabolism
  • Component of Novobiocin biosynthesis
  • Component of Phenylalanine metabolism
  • Component of Phenylalanine, tyrosine and tryptophan biosynthesis
  • Component of Pyruvate metabolism
  • Component of Tyrosine metabolism
ApplicationNot Available
Cellular locations
  • Mitochondria
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point161 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility134 mg/mLNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility57.1 mg/mLALOGPS
logP-0.68ALOGPS
logP-0.042ChemAxon
logS-0.36ALOGPS
pKa (Strongest Acidic)2.41ChemAxon
pKa (Strongest Basic)-9.9ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area91.67 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity24.33 m3·mol-1ChemAxon
Polarizability10.06 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-00dr-4900000000-9d943d40beaca3c602a1View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 2 TMS)splash10-007a-9210000000-020f60717e2ea79d1ccdView in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 2 TMS)splash10-000b-9540000000-a53f674cc98960834f88View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 3 TMS)splash10-001a-8940000000-40b790e06141d7180938View in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-000i-9000000000-0be675f3aa3e973393b7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-000f-9000000000-4fba97fcd7b0f2215f75View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Negative (Annotated)splash10-0006-9000000000-9b1f4171aee6283a3cbdView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-3900000000-6f4e965a3f513bf8db13View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-9600000000-8ae7abf60057088e14dbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-01bc-9100000000-5724c215c46a4f568140View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0019-8900000000-829898d0849b1fbf1c28View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000i-9100000000-5a5ff8fb7cb52eebf0c8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9000000000-657d1384d478ddc33b6dView in MoNA
MSMass Spectrum (Electron Ionization)splash10-0006-9000000000-f371299a07d43c23ff1dView in MoNA
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Mitochondria
  • Peroxisome
Biofluid Locations
  • Cellular Cytoplasm
  • Cerebrospinal Fluid (CSF)
  • Urine
Tissue Location
  • Liver
Pathways
NameSMPDB LinkKEGG Link
2-Hydroxyglutric Aciduria (D And L Form)SMP00136Not Available
2-ketoglutarate dehydrogenase complex deficiencySMP00549Not Available
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase DeficiencySMP00243Not Available
Alanine MetabolismSMP00055map00250
AlkaptonuriaSMP00169Not Available
Arginine and Proline MetabolismSMP00020map00330
Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency)SMP00362Not Available
ArgininemiaSMP00357Not Available
Argininosuccinic AciduriaSMP00003Not Available
Aspartate MetabolismSMP00067map00250
Canavan DiseaseSMP00175Not Available
Carbamoyl Phosphate Synthetase DeficiencySMP00002Not Available
Citric Acid CycleSMP00057map00020
Citrullinemia Type ISMP00001Not Available
Congenital lactic acidosisSMP00546Not Available
Creatine deficiency, guanidinoacetate methyltransferase deficiencySMP00504Not Available
Disulfiram PathwaySMP00429Not Available
Dopamine beta-hydroxylase deficiencySMP00498Not Available
Fructose-1,6-diphosphatase deficiencySMP00562Not Available
Fumarase deficiencySMP00547Not Available
GluconeogenesisSMP00128map00010
Glutamate MetabolismSMP00072map00250
Glutaminolysis and CancerSMP02298Not Available
Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke DiseaseSMP00374Not Available
Glycogenosis, Type IA. Von gierke diseaseSMP00581Not Available
Glycogenosis, Type IBSMP00573Not Available
Glycogenosis, Type ICSMP00574Not Available
Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency)SMP00188Not Available
HawkinsinuriaSMP00190Not Available
HomocarnosinosisSMP00385Not Available
Hyperinsulinism-Hyperammonemia SyndromeSMP00339Not Available
Hyperornithinemia with gyrate atrophy (HOGA)SMP00505Not Available
Hyperornithinemia-hyperammonemia-homocitrullinuria [HHH-syndrome]SMP00506Not Available
Hyperprolinemia Type ISMP00361Not Available
Hyperprolinemia Type IISMP00360Not Available
HypoacetylaspartiaSMP00192Not Available
L-arginine:glycine amidinotransferase deficiencySMP00507Not Available
Lactic AcidemiaSMP00313Not Available
Leigh SyndromeSMP00196Not Available
Malate-Aspartate ShuttleSMP00129Not Available
Mitochondrial complex II deficiencySMP00548Not Available
Monoamine oxidase-a deficiency (MAO-A)SMP00533Not Available
Ornithine Aminotransferase Deficiency (OAT Deficiency)SMP00363Not Available
Ornithine Transcarbamylase Deficiency (OTC Deficiency)SMP00205Not Available
Phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1)SMP00560Not Available
Primary hyperoxaluria II, PH2SMP00558Not Available
Primary Hyperoxaluria Type ISMP00352Not Available
Prolidase Deficiency (PD)SMP00207Not Available
Prolinemia Type IISMP00208Not Available
Pyruvate Carboxylase DeficiencySMP00350Not Available
Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency)SMP00334Not Available
Pyruvate Dehydrogenase Complex DeficiencySMP00212Not Available
Pyruvate dehydrogenase deficiency (E2)SMP00551Not Available
Pyruvate dehydrogenase deficiency (E3)SMP00550Not Available
Pyruvate kinase deficiencySMP00559Not Available
Pyruvate MetabolismSMP00060map00620
Succinic semialdehyde dehydrogenase deficiencySMP00567Not Available
The oncogenic action of 2-hydroxyglutarateSMP02291Not Available
The oncogenic action of D-2-hydroxyglutarate in Hydroxygluaricaciduria SMP02359Not Available
The oncogenic action of FumarateSMP02295Not Available
The oncogenic action of L-2-hydroxyglutarate in HydroxygluaricaciduriaSMP02358Not Available
The oncogenic action of SuccinateSMP02292Not Available
Transfer of Acetyl Groups into MitochondriaSMP00466Not Available
Triosephosphate isomeraseSMP00563Not Available
Tyrosine MetabolismSMP00006map00350
Tyrosinemia Type ISMP00218Not Available
Tyrosinemia, transient, of the newbornSMP00494Not Available
Urea CycleSMP00059map00330
Warburg EffectSMP00654Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
Cellular CytoplasmDetected and Quantified61 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified7.3 (6.1-8.3) uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Cerebrospinal Fluid (CSF)Detected and Quantified27 +/- 15 uMAdult (>18 years old)BothNormal details
UrineDetected and Quantified2.2 (1.16-5.94) umol/mmol creatinineAdult (>18 years old)FemaleNormal details
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
UrineDetected and Quantified2.27 (0.51-4.48) umol/mmol creatinineAdult (>18 years old)MaleNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
Cellular CytoplasmDetected and Quantified2 uMAdult (>18 years old)BothAnoxia details
Associated Disorders and Diseases
Disease References
Anoxia
  1. Zupke C, Sinskey AJ, Stephanopoulos G: Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol. 1995 Dec;44(1-2):27-36. [8579834 ]
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB001479
KNApSAcK IDC00001197
Chemspider ID945
KEGG Compound IDC00036
BioCyc IDOXALACETIC_ACID
BiGG ID33604
Wikipedia LinkOxalacetic acid
NuGOwiki LinkHMDB00223
Metagene LinkHMDB00223
METLIN ID123
PubChem Compound970
PDB IDNot Available
ChEBI ID30744
References
Synthesis ReferenceHeidelberger, Charles; Hurlbert, Robert B. The synthesis of oxalacetic acid-I-C14 and orotic acid-6-C14. Journal of the American Chemical Society (1950), 72 4704-6.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Sweatman BC, Farrant RD, Holmes E, Ghauri FY, Nicholson JK, Lindon JC: 600 MHz 1H-NMR spectroscopy of human cerebrospinal fluid: effects of sample manipulation and assignment of resonances. J Pharm Biomed Anal. 1993 Aug;11(8):651-64. [8257730 ]
  2. Zupke C, Sinskey AJ, Stephanopoulos G: Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol. 1995 Dec;44(1-2):27-36. [8579834 ]
  3. Efimov AS, Gulyi MF, Shcherbak AV, Dzvonkevich ND: [Levels of Krebs cycle metabolites in the blood and urine of patients with diabetes mellitus] Probl Endokrinol (Mosk). 1983 Mar-Apr;29(2):10-4. [6856592 ]
  4. el-Sharabasy MM: Observations on calcium oxalate stone formers. Br J Urol. 1992 Nov;70(5):474-7. [1361403 ]
  5. Dworzak E, Grunicke H, Berger H, Jarosch E, Haas H, Hopfel I: [Pyruvate dehydrogenase deficiency in a child with persistent lactic acidosis] J Clin Chem Clin Biochem. 1985 Jun;23(6):323-9. [3926941 ]
  6. Koike K, Koike M: Fluorescent analysis of alpha-keto acids in serum and urine by high-performance liquid chromatography. Anal Biochem. 1984 Sep;141(2):481-7. [6437276 ]
  7. Esenmo E, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR: Use of 14CO2 in estimating rates of hepatic gluconeogenesis. Am J Physiol. 1992 Jul;263(1 Pt 1):E36-41. [1322046 ]
  8. Petrarulo M, Facchini P, Cerelli E, Marangella M, Linari F: Citrate in urine determined with a new citrate lyase method. Clin Chem. 1995 Oct;41(10):1518-21. [7586527 ]
  9. Sperl W, Maurer H, Dworschak E, Hopfel I, Hammerer I: [Lactic acid acidosis with mitochondrial myopathy due to a pyruvate dehydrogenase deficiency] Padiatr Padol. 1985;20(1):55-67. [3919358 ]
  10. Olubuyide IO, Festing MF, Chapman C, Higginson J, Whicher JT: Discriminant analysis of biochemical parameters in liver disease. Trop Gastroenterol. 1997 Jan-Mar;18(1):15-9. [9197166 ]
  11. Rabinovich PD, Miliushkin PV: [Content of biological oxidation metabolites in the blood and urine of peptic ulcer patients] Vopr Med Khim. 1979 Nov-Dec;25(6):755-8. [516538 ]
  12. Schauenstein E, Kronberger L, Schaur RJ, Fink E, Georgiopulos E: [Malate and oxaloacetate levels in whole blood of patients with and without malignant tumor diseases] Wien Klin Wochenschr. 1973 Jun 29;85(26):478-82. [4717666 ]
  13. Allen RH, Stabler SP, Savage DG, Lindenbaum J: Elevation of 2-methylcitric acid I and II levels in serum, urine, and cerebrospinal fluid of patients with cobalamin deficiency. Metabolism. 1993 Aug;42(8):978-88. [8345822 ]
  14. Wong LT, Davidson AG, Applegarth DA, Dimmick JE, Norman MG, Toone JR, Pirie G, Wong J: Biochemical and histologic pathology in an infant with cross-reacting material (negative) pyruvate carboxylase deficiency. Pediatr Res. 1986 Mar;20(3):274-9. [3085060 ]

Enzymes

General function:
Involved in ATP citrate synthase activity
Specific function:
ATP citrate-lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. Has a central role in de novo lipid synthesis. In nervous tissue it may be involved in the biosynthesis of acetylcholine.
Gene Name:
ACLY
Uniprot ID:
P53396
Molecular weight:
120838.27
Reactions
ADP + Phosphoric acid + Acetyl-CoA + Oxalacetic acid → Adenosine triphosphate + Citric acid + Coenzyme Adetails
Adenosine triphosphate + Citric acid + Coenzyme A → ADP + Phosphoric acid + Acetyl-CoA + Oxalacetic aciddetails
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate.
Gene Name:
PC
Uniprot ID:
P11498
Molecular weight:
129632.565
Reactions
Adenosine triphosphate + Pyruvic acid + Carbonic acid → ADP + Phosphoric acid + Oxalacetic aciddetails
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Not Available
Gene Name:
CS
Uniprot ID:
O75390
Molecular weight:
51712.025
Reactions
Acetyl-CoA + Water + Oxalacetic acid → Citric acid + Coenzyme Adetails
Citric acid + Coenzyme A → Acetyl-CoA + Water + Oxalacetic aciddetails
General function:
Involved in D-amino-acid oxidase activity
Specific function:
Selectively catalyzes the oxidative deamination of D-aspartate and its N-methylated derivative, N-methyl D-aspartate.
Gene Name:
DDO
Uniprot ID:
Q99489
Molecular weight:
40992.53
Reactions
D-Aspartic acid + Water + Oxygen → Oxalacetic acid + Ammonia + Hydrogen peroxidedetails
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Plays a key role in amino acid metabolism (By similarity).
Gene Name:
GOT1
Uniprot ID:
P17174
Molecular weight:
46247.14
Reactions
L-Aspartic acid + Oxoglutaric acid → Oxalacetic acid + L-Glutamic aciddetails
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long-chain free fatty acids.
Gene Name:
GOT2
Uniprot ID:
P00505
Molecular weight:
47517.285
Reactions
L-Aspartic acid + Oxoglutaric acid → Oxalacetic acid + L-Glutamic aciddetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ME1
Uniprot ID:
P48163
Molecular weight:
64149.075
Reactions
Oxalacetic acid → Pyruvic acid + CO(2)details
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Not Available
Gene Name:
MDH2
Uniprot ID:
P40926
Molecular weight:
35502.935
Reactions
L-Malic acid + NAD → Oxalacetic acid + NADHdetails
L-Malic acid + NAD → Oxalacetic acid + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ME3
Uniprot ID:
Q16798
Molecular weight:
67067.875
Reactions
Oxalacetic acid → Pyruvic acid + CO(2)details
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Not Available
Gene Name:
MDH1
Uniprot ID:
P40925
Molecular weight:
38627.255
Reactions
L-Malic acid + NAD → Oxalacetic acid + NADHdetails
L-Malic acid + NAD → Oxalacetic acid + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ME2
Uniprot ID:
P23368
Molecular weight:
53585.73
Reactions
Oxalacetic acid → Pyruvic acid + CO(2)details
General function:
Involved in phosphoenolpyruvate carboxykinase activity
Specific function:
Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle (By similarity).
Gene Name:
PCK2
Uniprot ID:
Q16822
Molecular weight:
47563.34
Reactions
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + CO(2)details
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + Carbon dioxidedetails
Inosine triphosphate + Oxalacetic acid → IDP + Phosphoenolpyruvic acid + Carbon dioxidedetails
General function:
Involved in phosphoenolpyruvate carboxykinase activity
Specific function:
Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle.
Gene Name:
PCK1
Uniprot ID:
P35558
Molecular weight:
69193.975
Reactions
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + CO(2)details
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + Carbon dioxidedetails
Inosine triphosphate + Oxalacetic acid → IDP + Phosphoenolpyruvic acid + Carbon dioxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Lysosomal L-amino-acid oxidase with highest specific activity with phenylalanine. May play a role in lysosomal antigen processing and presentation (By similarity).
Gene Name:
IL4I1
Uniprot ID:
Q96RQ9
Molecular weight:
65327.26
Reactions
L-Aspartic acid + Water + Oxygen → Oxalacetic acid + Ammonia + Hydrogen peroxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Specifically catalyzes the NAD or NADP-dependent dehydrogenation of L-aspartate to iminoaspartate (By similarity).
Gene Name:
ASPDH
Uniprot ID:
A6ND91
Molecular weight:
18655.255
Reactions
L-Aspartic acid + Water + NAD(P)(+) → Oxalacetic acid + Ammonia + NAD(P)Hdetails
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Not Available
Gene Name:
GOT1L1
Uniprot ID:
Q8NHS2
Molecular weight:
47304.72
Reactions
L-Aspartic acid + Oxoglutaric acid → Oxalacetic acid + L-Glutamic aciddetails
General function:
Not Available
Specific function:
Has a omega-amidase activity. The role of omega-amidase is to remove potentially toxic intermediates by converting alpha-ketoglutaramate and alpha-ketosuccinamate to biologically useful alpha-ketoglutarate and oxaloacetate, respectively. Overexpression decreases the colony-forming capacity of cultured cells by arresting cells in the G2 phase of the cell cycle.
Gene Name:
NIT2
Uniprot ID:
Q9NQR4
Molecular weight:
30607.645
Reactions
2-Oxosuccinamate + Water → Oxalacetic acid + Ammoniadetails