You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:02:27 UTC
HMDB IDHMDB00263
Secondary Accession NumbersNone
Metabolite Identification
Common NamePhosphoenolpyruvic acid
DescriptionPhosphoenolpyruvate (PEP) is an important chemical compound in biochemistry. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia).
Structure
Thumb
Synonyms
ValueSource
PEPKegg
PhosphoenolpyruvateGenerator
2-Hydroxy-acrylic acid dihydrogen phosphateHMDB
2-Phosphonooxyprop-2-enoateHMDB
2-Phosphonooxyprop-2-enoic acidHMDB
P-enol-PyruvateHMDB
Chemical FormulaC3H5O6P
Average Molecular Weight168.042
Monoisotopic Molecular Weight167.982374404
IUPAC Name2-(phosphonooxy)prop-2-enoic acid
Traditional Namephosphoenolpyruvic acid
CAS Registry Number138-08-9
SMILES
OC(=O)C(=C)OP(O)(O)=O
InChI Identifier
InChI=1S/C3H5O6P/c1-2(3(4)5)9-10(6,7)8/h1H2,(H,4,5)(H2,6,7,8)
InChI KeyInChIKey=DTBNBXWJWCWCIK-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as phosphate esters. These are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group.
KingdomOrganic compounds
Super ClassOrganophosphorus compounds
ClassOrganic phosphoric acids and derivatives
Sub ClassPhosphate esters
Direct ParentPhosphate esters
Alternative Parents
Substituents
  • Phosphoric acid ester
  • Organic phosphate
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
Biofunction
  • Component of Aminosugars metabolism
  • Component of Phenylalanine, tyrosine and tryptophan biosynthesis
  • Component of Purine metabolism
  • Component of Pyruvate metabolism
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Mitochondria
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility13.2 mg/mLALOGPS
logP-1.2ALOGPS
logP-0.64ChemAxon
logS-1.1ALOGPS
pKa (Strongest Acidic)0.76ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area104.06 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity30.13 m3·mol-1ChemAxon
Polarizability11.57 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0292-0962000000-44d3914b4e07e5c50e3fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0udr-1900000000-9a4f5554af9a717d99c7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000x-9200000000-6cdc15f3daa25fc41655View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-001i-9100000000-39e22409d6d924a774f1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00xu-0912000000-ad1823470675975d5ff0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-1f5b761ce5fa374b0f8eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-d279f0ca2accb130181fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0920000000-f084dccf78e11c8760d7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00lr-0911000000-7fa833698210746c838fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-62e28301f20b08971b78View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-25f970898112f7b89898View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0930000000-58691b23d317c2418c33View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-00p0-0493110000-9d61bb13ab5261fdf9fdView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-9100000000-db409b3cfa9ebabbcb58View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4j-5090000000-1ee56bc4866301d4bf2eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4i-0090000000-bce08b01d44391bfecadView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-016r-7900000000-ffd3b8dcd65aaea26ac3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-9000000000-ceae3587b1e7d8b3da27View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-9000000000-701a17330cd18255d625View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-004i-9000000000-a4178ce4951e2c3dba7bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-004i-9000000000-9d0421620a7aaa9ef33fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0k9i-1900000000-fb12ade375a7ac97f150View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-0f76-8900000000-7f57e6a8e72e5992cd88View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-000j-9300000000-c02bca019150d572b3bcView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-05bf-9200000000-73fa5ca52ecc17bac380View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0079-9300000000-231346190165f44f28dcView in MoNA
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondria
Biofluid Locations
  • Blood
  • Cellular Cytoplasm
  • Saliva
Tissue Location
  • Prostate
Pathways
NameSMPDB LinkKEGG Link
Amino Sugar MetabolismSMP00045map00520
Fanconi-bickel syndromeSMP00572Not Available
Fructose-1,6-diphosphatase deficiencySMP00562Not Available
G(M2)-Gangliosidosis: Variant B, Tay-sachs diseaseSMP00534Not Available
GluconeogenesisSMP00128map00010
Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke DiseaseSMP00374Not Available
Glycogenosis, Type IA. Von gierke diseaseSMP00581Not Available
Glycogenosis, Type IBSMP00573Not Available
Glycogenosis, Type ICSMP00574Not Available
Glycogenosis, Type VII. Tarui diseaseSMP00531Not Available
GlycolysisSMP00040map00010
Leigh SyndromeSMP00196Not Available
Phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1)SMP00560Not Available
Primary hyperoxaluria II, PH2SMP00558Not Available
Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency)SMP00334Not Available
Pyruvate Dehydrogenase Complex DeficiencySMP00212Not Available
Pyruvate kinase deficiencySMP00559Not Available
Pyruvate MetabolismSMP00060map00620
Salla Disease/Infantile Sialic Acid Storage DiseaseSMP00240Not Available
Sialuria or French Type SialuriaSMP00216Not Available
Sialuria or French Type SialuriaSMP00217Not Available
Tay-Sachs DiseaseSMP00390Not Available
Triosephosphate isomeraseSMP00563Not Available
Warburg EffectSMP00654Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified7.6 +/- 2.9 uMNewborn (0-30 days old)BothNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified17.4 +/- 3.8 uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Cellular CytoplasmDetected and Quantified17.0 (15.0-19.0) uMAdult (>18 years old)BothNormal details
SalivaDetected and Quantified2.07 +/- 1.22 uMAdult (>18 years old)FemaleNormal details
SalivaDetected and Quantified0.219 +/- 0.312 uMAdult (>18 years old)Male
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.312 +/- 0.332 uMAdult (>18 years old)Not Specified
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.419 +/- 0.270 uMAdult (>18 years old)Not Specified
Normal
    • Sugimoto et al. (...
details
SalivaDetected and Quantified0.463 +/- 0.275 uMAdult (>18 years old)Female
Normal
    • Sugimoto et al. (...
details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
SalivaDetected and Quantified1.94 +/- 1.62 uMAdult (>18 years old)MaleAlzheimer's disease details
SalivaDetected and Quantified2.45 +/- 3.70 uMAdult (>18 years old)MaleFrontotemporal lobe dementia details
SalivaDetected and Quantified2.36 +/- 3.13 uMAdult (>18 years old)BothLewy body disease details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01819
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB001451
KNApSAcK IDC00000798
Chemspider ID980
KEGG Compound IDC00074
BioCyc IDPHOSPHO-ENOL-PYRUVATE
BiGG ID33756
Wikipedia LinkPEP
NuGOwiki LinkHMDB00263
Metagene LinkHMDB00263
METLIN ID5264
PubChem Compound1005
PDB IDPEP
ChEBI ID44897
References
Synthesis ReferenceSimon, Ethan S.; Grabowski, Sven; Whitesides, George M. Preparation of phosphoenolpyruvate from D-(-)-3-phosphoglyceric acid for use in regeneration of ATP. Journal of the American Chemical Society (1989), 111(24), 8920-1.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. [19212411 ]
  2. Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. [15882454 ]
  3. Krogh P: Role of ochratoxin in disease causation. Food Chem Toxicol. 1992 Mar;30(3):213-24. [1618445 ]
  4. Germaine GR, Tellefson LM: Promotion of Streptococcus mutans glucose transport by human whole saliva and parotid fluid. Infect Immun. 1985 Apr;48(1):7-13. [3980096 ]
  5. Schatzberger P: Maternity services. BMJ. 1992 May 23;304(6838):1382-3. [1611358 ]
  6. Orye E, Verhaaren H, Samuel K, van Mele B: A 46,XX,10Q+ chromosome constitution in a girl. Partial long arm duplication or insertional translocation? Humangenetik. 1975 May 26;28(1):1-8. [1150258 ]
  7. Landau BR, Chandramouli V, Schumann WC, Ekberg K, Kumaran K, Kalhan SC, Wahren J: Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients. Diabetologia. 1995 Jul;38(7):831-8. [7556986 ]
  8. Shirokane Y, Nakajima M, Mizusawa K: A new enzymatic assay of urinary guanidinoacetic acid. Clin Chim Acta. 1991 Oct 31;202(3):227-36. [1667626 ]
  9. Tannen RL: Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265-77. [29492 ]
  10. Atkin BM, Buist NR, Utter MF, Leiter AB, Banker BQ: Pyruvate carboxylase deficiency and lactic acidosis in a retarded child without Leigh's disease. Pediatr Res. 1979 Feb;13(2):109-16. [219411 ]
  11. Bojarska-Dahlig H, Gloabski T, Dzioegielewska I: [Salts of cyclic erythromycin A carbonate with cinnamic acid derivatives] Acta Pol Pharm. 1975;32(3):311-7. [1155186 ]
  12. Matsumoto T, van der Auwera P, Watanabe Y, Tanaka M, Ogata N, Naito S, Kumazawa J: Neutrophil function in hyperosmotic NaCl is preserved by phosphoenol pyruvate. Urol Res. 1991;19(4):223-7. [1656579 ]
  13. Cahill GF Jr, Aoki TT: Renal gluconeogenesis and amino-acid metabolism in man. Med Clin North Am. 1975 May;59(3):751-61. [1092934 ]
  14. Beyer C: Creatine measurement in serum and urine with an automated enzymatic method. Clin Chem. 1993 Aug;39(8):1613-9. [8353946 ]
  15. Momeni N, Yoshimoto T, Ryberg B, Sandberg-Wollheim M, Grubb A: Factors influencing analysis of prolyl endopeptidase in human blood and cerebrospinal fluid: increase in assay sensitivity. Scand J Clin Lab Invest. 2003;63(6):387-95. [14594319 ]

Enzymes

General function:
Involved in catalytic activity
Specific function:
Produces N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN). Can also use N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively.
Gene Name:
NANS
Uniprot ID:
Q9NR45
Molecular weight:
40307.26
Reactions
Phosphoenolpyruvic acid + N-Acetylmannosamine + Water → Phosphoric acid + N-Acetylneuraminic aciddetails
Phosphoenolpyruvic acid + N-acyl-D-mannosamine 6-phosphate + Water → N-acylneuraminate 9-phosphate + Phosphoric aciddetails
N-Acetylneuraminic acid 9-phosphate + Phosphoric acid → N-Acetyl-D-mannosamine 6-phosphate + Phosphoenolpyruvic acid + Waterdetails
General function:
Involved in 6-phosphofructokinase activity
Specific function:
Catalyzes the third step of glycolysis, the phosphorylation of fructose-6-phosphate (F6P) by ATP to generate fructose-1,6-bisphosphate (FBP) and ADP.
Gene Name:
PFKP
Uniprot ID:
Q01813
Molecular weight:
85595.405
General function:
Involved in 6-phosphofructokinase activity
Specific function:
Catalyzes the third step of glycolysis, the phosphorylation of fructose-6-phosphate (F6P) by ATP to generate fructose-1,6-bisphosphate (FBP) and ADP.
Gene Name:
PFKL
Uniprot ID:
P17858
Molecular weight:
85017.825
General function:
Involved in 6-phosphofructokinase activity
Specific function:
Catalyzes the third step of glycolysis, the phosphorylation of fructose-6-phosphate (F6P) by ATP to generate fructose-1,6-bisphosphate (FBP) and ADP.
Gene Name:
PFKM
Uniprot ID:
P08237
Molecular weight:
85181.925
General function:
Involved in magnesium ion binding
Specific function:
Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio betwween the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival.
Gene Name:
PKM
Uniprot ID:
P14618
Molecular weight:
65930.14
Reactions
Adenosine triphosphate + Pyruvic acid → ADP + Phosphoenolpyruvic aciddetails
Guanosine triphosphate + Pyruvic acid → Guanosine diphosphate + Phosphoenolpyruvic aciddetails
Deoxyadenosine triphosphate + Pyruvic acid → dADP + Phosphoenolpyruvic aciddetails
dGTP + Pyruvic acid → dGDP + Phosphoenolpyruvic aciddetails
Nucleoside triphosphate + Pyruvic acid → NDP + Phosphoenolpyruvic aciddetails
General function:
Involved in magnesium ion binding
Specific function:
Plays a key role in glycolysis (By similarity).
Gene Name:
PKLR
Uniprot ID:
P30613
Molecular weight:
61829.575
Reactions
Adenosine triphosphate + Pyruvic acid → ADP + Phosphoenolpyruvic aciddetails
Guanosine triphosphate + Pyruvic acid → Guanosine diphosphate + Phosphoenolpyruvic aciddetails
Deoxyadenosine triphosphate + Pyruvic acid → dADP + Phosphoenolpyruvic aciddetails
dGTP + Pyruvic acid → dGDP + Phosphoenolpyruvic aciddetails
Nucleoside triphosphate + Pyruvic acid → NDP + Phosphoenolpyruvic aciddetails
General function:
Involved in phosphoenolpyruvate carboxykinase activity
Specific function:
Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle (By similarity).
Gene Name:
PCK2
Uniprot ID:
Q16822
Molecular weight:
47563.34
Reactions
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + CO(2)details
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + Carbon dioxidedetails
Inosine triphosphate + Oxalacetic acid → IDP + Phosphoenolpyruvic acid + Carbon dioxidedetails
General function:
Involved in phosphoenolpyruvate carboxykinase activity
Specific function:
Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle.
Gene Name:
PCK1
Uniprot ID:
P35558
Molecular weight:
69193.975
Reactions
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + CO(2)details
Guanosine triphosphate + Oxalacetic acid → Guanosine diphosphate + Phosphoenolpyruvic acid + Carbon dioxidedetails
Inosine triphosphate + Oxalacetic acid → IDP + Phosphoenolpyruvic acid + Carbon dioxidedetails
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General function:
Involved in magnesium ion binding
Specific function:
Appears to have a function in striated muscle development and regeneration.
Gene Name:
ENO3
Uniprot ID:
P13929
Molecular weight:
42248.03
Reactions
2-Phospho-D-glyceric acid → Phosphoenolpyruvic acid + Waterdetails
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General function:
Involved in magnesium ion binding
Specific function:
Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity).
Gene Name:
ENO2
Uniprot ID:
P09104
Molecular weight:
47268.125
Reactions
2-Phospho-D-glyceric acid → Phosphoenolpyruvic acid + Waterdetails
General function:
Involved in magnesium ion binding
Specific function:
Multifunctional enzyme that, as well as its role in glycolysis, plays a part in various processes such as growth control, hypoxia tolerance and allergic responses. May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons. Stimulates immunoglobulin production. MBP1 binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor.
Gene Name:
ENO1
Uniprot ID:
P06733
Molecular weight:
36927.84
Reactions
2-Phospho-D-glyceric acid → Phosphoenolpyruvic acid + Waterdetails

Transporters

General function:
Not Available
Specific function:
May mediate the release of newly synthesized prostaglandins from cells, the transepithelial transport of prostaglandins, and the clearance of prostaglandins from the circulation. Transports PGD2, as well as PGE1, PGE2 and PGF2A
Gene Name:
SLCO2A1
Uniprot ID:
Q92959
Molecular weight:
70117.0
References
  1. Chan BS, Endo S, Kanai N, Schuster VL: Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am J Physiol Renal Physiol. 2002 Jun;282(6):F1097-102. [11997326 ]