You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2012-09-11 18:28:27 UTC
Update Date2019-07-23 06:14:09 UTC
HMDB IDHMDB0033716
Secondary Accession Numbers
  • HMDB33716
Metabolite Identification
Common Name3-Phenylpropanal
Description3-Phenylpropanal is found in alcoholic beverages. 3-Phenylpropanal is present in cinnamon, tomato, gruyere de comte cheese, beer, cooked trassi, origanum (Spanish) and strawberry. 3-Phenylpropanal is a flavour ingredient.
Structure
Data?1563862449
Synonyms
ValueSource
3-Phenyl-propionaldehydeChEMBL
3-Phenyl-1-propanalHMDB
3-Phenyl-propionaidehydeHMDB
3-Phenylpropan-1-alHMDB
3-PhenylpropionaldehydeHMDB
3-Phenylpropyl aldehydeHMDB
3-PhenylpropylaldehydeHMDB
BenzenepropanalHMDB
Benzenepropanal, 9ciHMDB
BenzylacetaldehydeHMDB
beta -PhenylpropionaldehydeHMDB
beta-PhenylpropionaldehydeHMDB
DihydrocinnamaldehydeHMDB
FEMA 2887HMDB
HydrocinnamaldehydeHMDB
Hydrocinnamic aldehydeHMDB
HydrocinnamylaldehydeHMDB
Phenyl-propanalHMDB
PhenylpropionaldehydeHMDB
Chemical FormulaC9H10O
Average Molecular Weight134.1751
Monoisotopic Molecular Weight134.073164942
IUPAC Name3-phenylpropanal
Traditional Namebenzenepropanal
CAS Registry Number104-53-0
SMILES
O=CCCC1=CC=CC=C1
InChI Identifier
InChI=1S/C9H10O/c10-8-4-7-9-5-2-1-3-6-9/h1-3,5-6,8H,4,7H2
InChI KeyYGCZTXZTJXYWCO-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassNot Available
Direct ParentBenzene and substituted derivatives
Alternative Parents
Substituents
  • Monocyclic benzene moiety
  • Alpha-hydrogen aldehyde
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aldehyde
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Role

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point47 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.56 g/LALOGPS
logP2.14ALOGPS
logP1.9ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)15.21ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity41.04 m³·mol⁻¹ChemAxon
Polarizability15 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-002f-9200000000-79841a7270e9c9570f25JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-002f-9200000000-79841a7270e9c9570f25JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9500000000-9b29d5a5d4722ac4e79aJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-1900000000-ebe1fed4487377778646JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00ku-4900000000-c705b023e92db7b411fdJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-9200000000-607e7d0c5fcdf2de6aacJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-3a59a74e50fa2604bc47JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-2900000000-79cf5ba3d914fdc64f40JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9100000000-5563a4404919b9fc143eJSpectraViewer | MoNA
MSMass Spectrum (Electron Ionization)splash10-002f-9200000000-b6c6eb84142ecf8702d8JSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB011835
KNApSAcK IDNot Available
Chemspider ID7421
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound7707
PDB ID3PL
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Boymans E, Janssen M, Muller C, Lutz M, Vogt D: Rh-catalyzed linear hydroformylation of styrene. Dalton Trans. 2013 Jan 7;42(1):137-42. doi: 10.1039/c2dt31738a. [PubMed:23104326 ]
  2. Xue X, Yu A, Cai Y, Cheng JP: A computational reinvestigation of the formation of N-alkylpyrroles via intermolecular redox amination. Org Lett. 2011 Nov 18;13(22):6054-7. doi: 10.1021/ol2025247. Epub 2011 Oct 20. [PubMed:22014326 ]
  3. Rocha-Martin J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisan JM, Lopez-Gallego F: Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresour Technol. 2012 Jan;103(1):343-50. doi: 10.1016/j.biortech.2011.10.018. Epub 2011 Oct 17. [PubMed:22055107 ]
  4. Zandvoort E, Geertsema EM, Quax WJ, Poelarends GJ: Enhancement of the promiscuous aldolase and dehydration activities of 4-oxalocrotonate tautomerase by protein engineering. Chembiochem. 2012 Jun 18;13(9):1274-7. doi: 10.1002/cbic.201200225. Epub 2012 May 21. [PubMed:22615135 ]
  5. Kasahara H, Jiao Y, Bedgar DL, Kim SJ, Patten AM, Xia ZQ, Davin LB, Lewis NG: Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochemistry. 2006 Aug;67(16):1765-80. Epub 2006 Aug 14. [PubMed:16905164 ]
  6. Vilaplana F, Martinez-Sanz M, Ribes-Greus A, Karlsson S: Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry. J Chromatogr A. 2010 Jan 15;1217(3):359-67. doi: 10.1016/j.chroma.2009.11.057. Epub 2009 Nov 20. [PubMed:19963220 ]
  7. Watkins AL, Landis CR: Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos. J Am Chem Soc. 2010 Aug 4;132(30):10306-17. doi: 10.1021/ja909619a. [PubMed:20662513 ]
  8. Agrawal MK, Ghosh PK: Halonium ion-assisted deiodination of styrene-based vicinal iodohydrins followed by rearrangement through phenyl migration. J Org Chem. 2009 Oct 16;74(20):7947-50. doi: 10.1021/jo9013707. [PubMed:19764730 ]
  9. Kjeldmand L, Salazar LT, Laska M: Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):15-23. doi: 10.1007/s00359-010-0580-y. Epub 2010 Sep 7. [PubMed:20820786 ]
  10. Casey CP, Martins SC, Fagan MA: Reversal of enantioselectivity in the hydroformylation of styrene with [2S,4S-BDPP]Pt(SnCl3)Cl at high temperature arises from a change in the enantioselective-determining step. J Am Chem Soc. 2004 May 5;126(17):5585-92. [PubMed:15113230 ]
  11. Youn B, Kim SJ, Moinuddin SG, Lee C, Bedgar DL, Harper AR, Davin LB, Lewis NG, Kang C: Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. J Biol Chem. 2006 Dec 29;281(52):40076-88. Epub 2006 Oct 6. [PubMed:17028190 ]
  12. Vukovic N, Sukdolak S, Solujic S, Niciforovic N: Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. J Med Food. 2009 Apr;12(2):435-41. doi: 10.1089/jmf.2008.0164. [PubMed:19459749 ]
  13. Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS: A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. Chembiochem. 2011 Mar 21;12(5):738-49. doi: 10.1002/cbic.201000662. Epub 2011 Mar 4. [PubMed:21374779 ]
  14. Lazny R, Nodzewska A, Sienkiewicz M, Wolosewicz K: Strategy for the synthesis of polymeric supports with hydrazone linkers for solid-phase alkylation of ketones and aldehydes. J Comb Chem. 2005 Jan-Feb;7(1):109-16. [PubMed:15638489 ]
  15. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2-alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione.
Gene Name:
CBR1
Uniprot ID:
P16152
Molecular weight:
30374.73
Reactions
3-Phenylpropanal → 3-Phenyl-1-propanoldetails