You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2012-09-11 20:41:49 UTC
Update Date2019-01-11 19:50:36 UTC
HMDB IDHMDB0035688
Secondary Accession Numbers
  • HMDB35688
Metabolite Identification
Common NameValencene
DescriptionValencene is found in citrus. Valencene is a constituent of orange oil
Structure
Data?1547236236
Synonyms
ValueSource
1-(4-(1-Pyrrolidinyl)-2-butynyl)-2-pyrrolidinoneHMDB
1-(4-(Pyrrolidin-1-yl)but-2-ynyl)pyrrolidin-2-oneHMDB
1-[4-(1-Pyrrolidinyl)-2-butynyl]-2-pyrrolidinoneHMDB
2'-oxopyrrolidino-1-pyrrolidino-4-ButyneHMDB
4beta H,5alpha -Eremophila-1(10),11-dieneHMDB
oxo-TremorineHMDB
OxotremorinHMDB
OxotremorineHMDB
Oxotremorine sesquifumarate saltHMDB
OxytremorineHMDB
Valencene 85HMDB
Chemical FormulaC15H24
Average Molecular Weight204.3511
Monoisotopic Molecular Weight204.187800768
IUPAC Name4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene
Traditional Namevalencene
CAS Registry Number4630-07-3
SMILES
CC1CCC=C2CCC(CC12C)C(C)=C
InChI Identifier
InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h7,12-13H,1,5-6,8-10H2,2-4H3
InChI KeyQEBNYNLSCGVZOH-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentEremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids
Alternative Parents
Substituents
  • Eremophilane sesquiterpenoid
  • Branched unsaturated hydrocarbon
  • Polycyclic hydrocarbon
  • Cyclic olefin
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Hydrocarbon
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Ontology
Disposition

Route of exposure:

Biological location:

Source:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0029 g/LALOGPS
logP5.86ALOGPS
logP4.52ChemAxon
logS-4.8ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity67.45 m³·mol⁻¹ChemAxon
Polarizability26.05 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-000i-1900000000-924c0ed0f560e2343f55JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-1490000000-64b1f2c7f108e8d251eeJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0cdr-3920000000-6ec0f8bff5e08c3188ebJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-6900000000-de9b8430cbefd1ff8a23JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udi-0090000000-dceadc1eb356d16afae6JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0udi-0190000000-2e9a22282b05ad914329JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-000i-1910000000-25622133ba47e98f5e5dJSpectraViewer | MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB014408
KNApSAcK IDC00034741
Chemspider ID254202
KEGG Compound IDC17277
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkValencene
METLIN IDNot Available
PubChem Compound288227
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Miwa H, Nishi K, Fuwa T, Mizuno Y: Differential expression of c-fos following administration of two tremorgenic agents: harmaline and oxotremorine. Neuroreport. 2000 Aug 3;11(11):2385-90. [PubMed:10943690 ]
  2. Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg A, Nishi A: Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology. 2012 Dec;63(7):1248-57. doi: 10.1016/j.neuropharm.2012.07.046. Epub 2012 Aug 7. [PubMed:22971543 ]
  3. Westermann KH, Oelszner W, Funk KF, Staib AH: Effects of oxotremorine after nigrostriatal lesions in rats. Pol J Pharmacol Pharm. 1975 Jul-Aug;27(4):413-7. [PubMed:1166022 ]
  4. Pavesi E, Gooch A, Lee E, Fletcher ML: Cholinergic modulation during acquisition of olfactory fear conditioning alters learning and stimulus generalization in mice. Learn Mem. 2012 Dec 14;20(1):6-10. doi: 10.1101/lm.028324.112. [PubMed:23242418 ]
  5. Palomares-Rius JE, Jones JT, Cock PJ, Castillo P, Blok VC: Activation of hatching in diapaused and quiescent Globodera pallida. Parasitology. 2013 Apr;140(4):445-54. doi: 10.1017/S0031182012001874. Epub 2012 Dec 20. [PubMed:23253858 ]
  6. Gholami M, Saboory E, Zare S, Roshan-Milani S, Hajizadeh-Moghaddam A: The effect of dorsal hippocampal administration of nicotinic and muscarinic cholinergic ligands on pentylenetetrazol-induced generalized seizures in rats. Epilepsy Behav. 2012 Oct;25(2):244-9. doi: 10.1016/j.yebeh.2012.07.004. Epub 2012 Oct 2. [PubMed:23037131 ]
  7. Daigle TL, Caron MG: Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation. J Neurosci. 2012 Aug 15;32(33):11461-6. doi: 10.1523/JNEUROSCI.2234-12.2012. [PubMed:22895728 ]
  8. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  9. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  10. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  11. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  12. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
  13. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.