You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-08-16 12:15:16 UTC
Update Date2014-10-09 18:45:11 UTC
HMDB IDHMDB00692
Secondary Accession NumbersNone
Metabolite Identification
Common NameFe2+
DescriptionIron is a chemical element with the symbol Fe and atomic number 26. Iron makes up 5% of the Earth's crust and is second in abundance to aluminium among the metals and fourth in abundance among the elements. Physiologically, it. exists as an ion in the body. Iron (as Fe2+, ferrous ion) is a necessary trace element used by all known living organisms. Iron-containing enzymes, usually containing heme prosthetic groups, participate in catalysis of oxidation reactions in biology, and in transport of a number of soluble gases. Iron is an essential constituent of hemoglobin, cytochrome, and other components of respiratory enzyme systems. Its chief functions are in the transport of oxygen to tissue (hemoglobin) and in cellular oxidation mechanisms. Inorganic iron involved in redox reactions is also found in the iron-sulfur clusters of many enzymes, such as nitrogenase (involved in the synthesis of ammonia from nitrogen and hydrogen) and hydrogenase. A class of non-heme iron proteins is responsible for a wide range of functions such as ribonucleotide reductase (reduces ribose to deoxyribose; DNA biosynthesis) and purple acid phosphatase (hydrolysis of phosphate esters). When the body is fighting a bacterial infection, the body sequesters iron inside of cells (mostly stored in the storage molecule ferritin) so that it cannot be used by bacteria. Depletion of iron stores may result in iron-deficiency anemia. Iron is used to build up the blood in anemia. Humans experience iron toxicity above 20 milligrams of iron for every kilogram of weight, and 60 milligrams per kilogram is a lethal dose. Over-consumption of iron, often the result of children eating large quantities of ferrous sulfate tablets intended for adult consumption, is the most common toxicological cause of death in children under six. The DRI lists the Tolerable Upper Intake Level (UL) for adults as 45 mg/day. For children under fourteen years old the UL is 40 mg/day. Iron is a metal extracted from iron ore, and is almost never found in the free elemental state.
Structure
Thumb
Synonyms
  1. Armco iron
  2. Carbonyl iron
  3. FE
  4. Ferrovac e
  5. Hematite
  6. Infed
  7. Limonite
  8. LOHA
  9. Magnetite
  10. Malleable iron
  11. Metopirone
  12. Metyrapone
  13. Pzh2M
  14. PZHO
  15. Remko
  16. Suy-B 2
  17. Taconite
  18. Venofer
  19. Wrought iron
Chemical FormulaFe
Average Molecular Weight55.845
Monoisotopic Molecular Weight55.934942133
IUPAC Nameiron(2+) ion
Traditional Nameiron ion(2+)
CAS Registry Number15438-31-0
SMILES
[Fe++]
InChI Identifier
InChI=1S/Fe/q+2
InChI KeyCWYNVVGOOAEACU-UHFFFAOYSA-N
Chemical Taxonomy
KingdomInorganic Compounds
Super ClassHomogeneous Metal Compounds
ClassHomogeneous Transition Metal Compounds
Sub ClassN/A
Other Descriptors
  • iron group element atom(ChEBI)
Substituents
  • N/A
Direct ParentHomogeneous Transition Metal Compounds
Ontology
StatusDetected and Quantified
Origin
  • Drug
  • Food
Biofunction
  • Component of Porphyrin and chlorophyll metabolism
  • DNA component
  • Enzyme co-factor
  • Essential minerals
ApplicationNot Available
Cellular locations
  • Extracellular
  • Mitochondria
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point1538 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-0.77ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity0 m3·mol-1ChemAxon
Polarizability1.78 Å3ChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Mitochondria
Biofluid Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Saliva
  • Urine
Tissue Location
  • Brain
  • Liver
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified9766 +/- 1246 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified8050.0 (7500.0-8600.0) uMAdult (>18 years old)Female
Normal
    • Geigy Scientific ...
details
BloodDetected and Quantified8950.0 (7900.0-10000.0) uMAdult (>18 years old)Male
Normal
    • Geigy Scientific ...
details
Cerebrospinal Fluid (CSF)Detected and Quantified3.6 +/- 3.6 uMElderly (>65 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified9.293 +/- 1.140 uMAdult (>18 years old)Not SpecifiedNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.8 (0.3-0.5) uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Cerebrospinal Fluid (CSF)Detected and Quantified0.783 +/- 0.551 uMAdult (>18 years old)FemaleNormal details
SalivaDetected and Quantified5.918 +/- 2.530 uMAdult (>18 years old)BothNormal
    • Dame, ZT. et al. ...
details
UrineDetected and Quantified0.0890 (0.0025-0.4579) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0.11 (0.0-0.14) umol/mmol creatinineAdult (>18 years old)BothNormal
    • Geigy Scientific ...
    • West Cadwell, N.J...
    • Basel, Switzerlan...
details
UrineDetected and Quantified0.029 (0.014-0.053) umol/mmol creatinineAdult (>18 years old)MaleNormal
    • Geigy Scientific ...
    • West Cadwell, N.J...
    • Basel, Switzerlan...
details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified8631 +/- 1497 uMAdult (>18 years old)Both
Multiple sclerosis
details
BloodDetected and Quantified20.1 +/- 7.7 uMAdult (>18 years old)BothParkinson's disease details
BloodDetected and Quantified16.3 +/- 7.7 uMElderly (>65 years old)BothAlzheimer's disease details
Cerebrospinal Fluid (CSF)Detected and Quantified0.488 +/- 0.374 uMAdult (>18 years old)Not Specifiedfibromyalgia details
Cerebrospinal Fluid (CSF)Detected and Quantified1.8 +/- 1.8 uMElderly (>65 years old)BothAlzheimer's disease details
Cerebrospinal Fluid (CSF)Detected and Quantified2.5 +/- 1.8 uMElderly (>65 years old)Not SpecifiedAlzheimer's disease details
Associated Disorders and Diseases
Disease References
Alzheimer's disease
  1. Molina JA, Jimenez-Jimenez FJ, Aguilar MV, Meseguer I, Mateos-Vega CJ, Gonzalez-Munoz MJ, de Bustos F, Porta J, Orti-Pareja M, Zurdo M, Barrios E, Martinez-Para MC: Cerebrospinal fluid levels of transition metals in patients with Alzheimer's disease. J Neural Transm. 1998;105(4-5):479-88. Pubmed: 9720975
  2. Bocca B, Forte G, Petrucci F, Pino A, Marchione F, Bomboi G, Senofonte O, Giubilei F, Alimonti A: Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer's disease. Ann Ist Super Sanita. 2005;41(2):197-203. Pubmed: 16244393
Multiple sclerosis
  1. Forte G, Visconti A, Santucci S, Ghazaryan A, Figa-Talamanca L, Cannoni S, Bocca B, Pino A, Violante N, Alimonti A, Salvetti M, Ristori G: Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann Ist Super Sanita. 2005;41(2):213-6. Pubmed: 16244395
Parkinson's disease
  1. Forte G, Alimonti A, Pino A, Stanzione P, Brescianini S, Brusa L, Sancesario G, Violante N, Bocca B: Metals and oxidative stress in patients with Parkinson's disease. Ann Ist Super Sanita. 2005;41(2):189-95. Pubmed: 16244392
Associated OMIM IDs
DrugBank IDDB01592
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB016251
KNApSAcK IDNot Available
Chemspider ID25394
KEGG Compound IDC14818
BioCyc IDFerric-Hydroxamate-Complexes
BiGG ID33552
Wikipedia LinkFerrous_ion
NuGOwiki LinkHMDB00692
Metagene LinkHMDB00692
METLIN IDNot Available
PubChem Compound27284
PDB IDFE2
ChEBI ID29033
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Gal S, Fridkin M, Amit T, Zheng H, Youdim MB: M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. J Neural Transm Suppl. 2006;(70):447-56. Pubmed: 17017567
  2. Piga A, Galanello R, Forni GL, Cappellini MD, Origa R, Zappu A, Donato G, Bordone E, Lavagetto A, Zanaboni L, Sechaud R, Hewson N, Ford JM, Opitz H, Alberti D: Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica. 2006 Jul;91(7):873-80. Pubmed: 16818273
  3. Nasolodin VV, Zaitseva IP, Gladkikh IP, Voronin SM: [Correction of iron and immune deficiencies in students from a higher humanitarian educational establishment] Gig Sanit. 2005 Sep-Oct;(5):64-7. Pubmed: 16277000
  4. Custodio PJ, Carvalho ML, Nunes F, Pedroso S, Campos A: Direct analysis of human blood (mothers and newborns) by energy dispersive X-ray fluorescence. J Trace Elem Med Biol. 2005;19(2-3):151-8. Epub 2005 Oct 24. Pubmed: 16325530
  5. Agarwal MB: Exjade (ICL 670): A new oral iron chelator. J Assoc Physicians India. 2006 Mar;54:214-7. Pubmed: 16800349
  6. Cortese S, Konofal E, Lecendreux M, Mouren MC, Bernardina BD: Restless legs syndrome triggered by heart surgery. Pediatr Neurol. 2006 Sep;35(3):223-6. Pubmed: 16939866
  7. Barkova EN, Nazarenko EV, Zhdanova EV: Diurnal variations in qualitative composition of breast milk in women with iron deficiency. Bull Exp Biol Med. 2005 Oct;140(4):394-6. Pubmed: 16671562
  8. Christoforidis A, Haritandi A, Tsitouridis I, Tsatra I, Tsantali H, Karyda S, Dimitriadis AS, Athanassiou-Metaxa M: Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. J Pediatr Hematol Oncol. 2006 May;28(5):311-5. Pubmed: 16772883
  9. Kom GD, Schwedhelm E, Nielsen P, Boger RH: Increased urinary excretion of 8-iso-prostaglandin F2alpha in patients with HFE-related hemochromatosis: a case-control study. Free Radic Biol Med. 2006 Apr 1;40(7):1194-200. Epub 2005 Dec 13. Pubmed: 16545687
  10. Gerlach M, Double KL, Youdim MB, Riederer P: Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl. 2006;(70):133-42. Pubmed: 17017520
  11. Jost PJ, Stengel SM, Huber W, Sarbia M, Peschel C, Duyster J: Very severe iron-deficiency anemia in a patient with celiac disease and bulimia nervosa: a case report. Int J Hematol. 2005 Nov;82(4):310-1. Pubmed: 16298820
  12. St Pierre TG, Clark PR, Chua-Anusorn W: Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci. 2005;1054:379-85. Pubmed: 16339686
  13. Clardy SL, Earley CJ, Allen RP, Beard JL, Connor JR: Ferritin subunits in CSF are decreased in restless legs syndrome. J Lab Clin Med. 2006 Feb;147(2):67-73. Pubmed: 16459164
  14. Grosse R, Lund U, Caruso V, Fischer R, Janka GE, Magnano C, Engelhardt R, Durken M, Nielsen P: Non-transferrin-bound iron during blood transfusion cycles in beta-thalassemia major. Ann N Y Acad Sci. 2005;1054:429-32. Pubmed: 16339692
  15. Anderson LJ, Westwood MA, Prescott E, Walker JM, Pennell DJ, Wonke B: Development of thalassaemic iron overload cardiomyopathy despite low liver iron levels and meticulous compliance to desferrioxamine. Acta Haematol. 2006;115(1-2):106-8. Pubmed: 16424659
  16. Matinaho S, Karhumaki P, Parkkinen J: Bicarbonate inhibits the growth of Staphylococcus epidermidis in platelet concentrates by lowering the level of non-transferrin-bound iron. Transfusion. 2005 Nov;45(11):1768-73. Pubmed: 16271102
  17. Blanck HM, Cogswell ME, Gillespie C, Reyes M: Iron supplement use and iron status among US adults: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 2005 Nov;82(5):1024-31. Pubmed: 16280434
  18. Yarali N, Fisgin T, Duru F, Kara A, Ecin N, Fitoz S, Erden I: Subcutaneous bolus injection of deferoxamine is an alternative method to subcutaneous continuous infusion. J Pediatr Hematol Oncol. 2006 Jan;28(1):11-6. Pubmed: 16394886
  19. Walter PB, Fung EB, Killilea DW, Jiang Q, Hudes M, Madden J, Porter J, Evans P, Vichinsky E, Harmatz P: Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006 Oct;135(2):254-63. Pubmed: 17010049
  20. Kontoghiorghes GJ, Kolnagou A: Molecular factors and mechanisms affecting iron and other metal excretion or absorption in health and disease: the role of natural and synthetic chelators. Curr Med Chem. 2005;12(23):2695-709. Pubmed: 16305466

Only showing the first 50 proteins. There are 191 proteins in total.

Enzymes

General function:
Involved in binding
Specific function:
N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6)
Gene Name:
APP
Uniprot ID:
P05067
Molecular weight:
86942.7
General function:
Involved in ATP binding
Specific function:
Could be involved in the transport of heme from the mitochondria to the cytosol. Plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins
Gene Name:
ABCB7
Uniprot ID:
O75027
Molecular weight:
82640.6
General function:
Involved in metabolic process
Specific function:
Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. Catalyzes the isomerization of citrate to isocitrate via cis-aconitate (By similarity).
Gene Name:
ACO1
Uniprot ID:
P21399
Molecular weight:
98398.14
General function:
Involved in oxidoreductase activity
Specific function:
Terminal component of the liver microsomal stearyl-CoA desaturase system, that utilizes O(2) and electrons from reduced cytochrome b5 to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA.
Gene Name:
SCD
Uniprot ID:
O00767
Molecular weight:
41522.28
General function:
Involved in cysteamine dioxygenase activity
Specific function:
Not Available
Gene Name:
ADO
Uniprot ID:
Q96SZ5
Molecular weight:
29750.535
General function:
Involved in oxidoreductase activity
Specific function:
Dioxygenase that repairs alkylated DNA and RNA containing 1-methyladenine and 3-methylcytosine by oxidative demethylation. Can also repair alkylated DNA containing 1-ethenoadenine (in vitro). Has strong preference for double-stranded DNA. Has low efficiency with single-stranded substrates. Requires molecular oxygen, alpha-ketoglutarate and iron.
Gene Name:
ALKBH2
Uniprot ID:
Q6NS38
Molecular weight:
29322.22
General function:
Involved in oxidoreductase activity
Specific function:
Dioxygenase that repairs alkylated DNA containing 1- methyladenine and 3-methylcytosine by oxidative demethylation. Has a strong preference for single-stranded DNA. May also act on RNA. Requires molecular oxygen, alpha-ketoglutarate and iron
Gene Name:
ALKBH3
Uniprot ID:
Q96Q83
Molecular weight:
33374.5
General function:
Involved in peptide-aspartate beta-dioxygenase activity
Specific function:
Isoform 1: specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins. Isoform 8: membrane-bound Ca(2+)-sensing protein, which is a structural component of the ER-plasma membrane junctions. Isoform 8 regulates the activity of Ca(+2) released-activated Ca(+2) (CRAC) channels in T-cells.
Gene Name:
ASPH
Uniprot ID:
Q12797
Molecular weight:
83267.47
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Symmetrically cleaves beta-carotene into two molecules of retinal. The reaction proceeds in three stages, epoxidation of the 15,15'-double bond, hydration of the double bond leading to ring opening, and oxidative cleavage of the diol formed.
Gene Name:
BCMO1
Uniprot ID:
Q9HAY6
Molecular weight:
62636.69
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Asymmetrically cleaves beta-carotene at the 9',10' double bond resulting in the formation of beta-apo-10'-carotenal and beta-ionone. Besides beta-carotene, lycopene is also oxidatively cleaved. The apocarotenals formed by this enzyme may be the precursors for the biosynthesis of retinoic acid or exert unknown physiological effects.
Gene Name:
BCO2
Uniprot ID:
Q9BYV7
Molecular weight:
61509.65
General function:
Involved in nucleotide binding
Specific function:
Chaperone necessary for the assembly of mitochondrial respiratory chain complex III. Plays an important role in the maintenance of mitochondrial tubular networks, respiratory chain assembly and formation of the LETM1 complex
Gene Name:
BCS1L
Uniprot ID:
Q9Y276
Molecular weight:
47533.8
General function:
Involved in catalytic activity
Specific function:
Broad specificity oxidoreductase that catalyzes the NADPH-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone). Contributes to heme catabolism and metabolizes linear tetrapyrroles. Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH. In the liver, converts biliverdin to bilirubin.
Gene Name:
BLVRB
Uniprot ID:
P30043
Molecular weight:
22119.215
General function:
Involved in iron ion binding
Specific function:
Catalyzes the formation of L-carnitine from gamma-butyrobetaine.
Gene Name:
BBOX1
Uniprot ID:
O75936
Molecular weight:
44714.6
General function:
Involved in scavenger receptor activity
Specific function:
After shedding, the soluble form (sCD163) may play an anti-inflammatory role, and may be a valuable diagnostic parameter for monitoring macrophage activation in inflammatory conditions
Gene Name:
CD163
Uniprot ID:
Q86VB7
Molecular weight:
125435.7
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHC
Uniprot ID:
Q99643
Molecular weight:
16650.185
General function:
Involved in iron ion binding
Specific function:
Initiates several important metabolic pathways related to pyruvate and several sulfurate compounds including sulfate, hypotaurine and taurine. Critical regulator of cellular cysteine concentrations. Has an important role in maintaining the hepatic concentation of intracellular free cysteine within a proper narrow range.
Gene Name:
CDO1
Uniprot ID:
Q16878
Molecular weight:
22971.745
General function:
Involved in oxidoreductase activity
Specific function:
Ceruloplasmin is a blue, copper-binding (6-7 atoms per molecule) glycoprotein. It has ferroxidase activity oxidizing Fe(2+) to Fe(3+) without releasing radical oxygen species. It is involved in iron transport across the cell membrane. Provides Cu(2+) ions for the ascorbate-mediated deaminase degradation of the heparan sulfate chains of GPC1. May also play a role in fetal lung development or pulmonary antioxidant defense (By similarity).
Gene Name:
CP
Uniprot ID:
P00450
Molecular weight:
122204.45
Reactions
Fe2+ + Hydrogen Ion + Oxygen → Fe3+ + Waterdetails
General function:
Involved in iron ion binding
Specific function:
Catalyzes the formation of 25-hydroxycholesterol from cholesterol, leading to repress cholesterol biosynthetic enzymes. May play an important role in regulating lipid metabolism by synthesizing a corepressor that blocks sterol regulatory element binding protein (SREBP) processing. In testis, production of 25-hydroxycholesterol by macrophages may play a role in Leydig cell differentiation.
Gene Name:
CH25H
Uniprot ID:
O95992
Molecular weight:
31744.755
General function:
Involved in oxidoreductase activity
Specific function:
Involved in lifespan determination in ubiquinone-independent manner. Involved in ubiquinone biosynthesis. Potential central metabolic regulator (By similarity).
Gene Name:
COQ7
Uniprot ID:
Q99807
Molecular weight:
Not Available
General function:
Involved in iron ion binding
Specific function:
Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
Gene Name:
MT-CO1
Uniprot ID:
P00395
Molecular weight:
57040.91
General function:
Involved in ferric-chelate reductase activity
Specific function:
Ferric-chelate reductase that reduces Fe(3+) to Fe(2+). Present at the brush border of duodenal enterocytes where it probably reduces dietary Fe(3+) thereby facilitating its transport into the mucosal cells. Uses ascorbate as electron donor. May be involved in extracellular ascorbate recycling in erythrocyte membranes. May also act as a ferrireductase in airway epithelial cells
Gene Name:
CYBRD1
Uniprot ID:
Q53TN4
Molecular weight:
31641.0
General function:
Involved in uroporphyrinogen decarboxylase activity
Specific function:
Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III.
Gene Name:
UROD
Uniprot ID:
P06132
Molecular weight:
40786.58
General function:
Involved in electron carrier activity
Specific function:
Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor.
Gene Name:
SDHA
Uniprot ID:
P31040
Molecular weight:
72690.975
General function:
Involved in electron carrier activity
Specific function:
Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHB
Uniprot ID:
P21912
Molecular weight:
31629.365
General function:
Involved in iron ion binding
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (By similarity).
Gene Name:
SDHD
Uniprot ID:
O14521
Molecular weight:
17042.82
General function:
Involved in electron carrier activity
Specific function:
Involved in pyrimidine base degradation. Catalyzes the reduction of uracil and thymine. Also involved the degradation of the chemotherapeutic drug 5-fluorouracil.
Gene Name:
DPYD
Uniprot ID:
Q12882
Molecular weight:
111400.32
General function:
Involved in protein serine/threonine kinase activity
Specific function:
Mediates down-regulation of protein synthesis in response to various stress conditions by the phosphorylation of EIF2S1 at 'Ser-48' and 'Ser-51'. Protein synthesis is inhibited at the level of initiation
Gene Name:
EIF2AK1
Uniprot ID:
Q9BQI3
Molecular weight:
71105.9
General function:
Involved in iron ion binding
Specific function:
Not Available
Gene Name:
MSMO1
Uniprot ID:
Q15800
Molecular weight:
19470.325
General function:
Involved in heme binding
Specific function:
Required for alpha-hydroxylation of free fatty acids and the formation of alpha-hydroxylated sphingolipids
Gene Name:
FA2H
Uniprot ID:
Q7L5A8
Molecular weight:
42791.0
General function:
Involved in cellular iron ion homeostasis
Specific function:
Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has only been shown using heterologous overexpression systems. Modulates the RNA-binding activity of ACO1.
Gene Name:
FXN
Uniprot ID:
Q16595
Molecular weight:
23134.895
Reactions
Fe2+ + Hydrogen Ion + Oxygen → Fe3+ + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity).
Gene Name:
FTH1
Uniprot ID:
P02794
Molecular weight:
21225.47
Reactions
Fe2+ + Hydrogen Ion + Oxygen → Fe3+ + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney
Gene Name:
FTL
Uniprot ID:
P02792
Molecular weight:
20019.5
General function:
Involved in oxidoreductase activity
Specific function:
Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation.
Gene Name:
FTMT
Uniprot ID:
Q8N4E7
Molecular weight:
27537.885
Reactions
Fe2+ + Hydrogen Ion + Oxygen → Fe3+ + Waterdetails
General function:
Involved in UDP-glucose:hexose-1-phosphate uridylyltransferase activity
Specific function:
Not Available
Gene Name:
GALT
Uniprot ID:
P07902
Molecular weight:
43362.83
General function:
Involved in 5-aminolevulinate synthase activity
Specific function:
Not Available
Gene Name:
ALAS2
Uniprot ID:
P22557
Molecular weight:
64632.86
General function:
Involved in heme transporter activity
Specific function:
Binds heme and transports it to the liver for breakdown and iron recovery, after which the free hemopexin returns to the circulation
Gene Name:
HPX
Uniprot ID:
P02790
Molecular weight:
51676.0
General function:
Involved in cellular iron ion homeostasis
Specific function:
Has strong antimicrobial activity against E.coli ML35P N.cinerea and weaker against S.epidermidis, S.aureus and group b streptococcus bacteria. Active against the fungus C.albicans. No activity against P.aeruginosa
Gene Name:
HAMP
Uniprot ID:
P81172
Molecular weight:
9408.1
General function:
Involved in copper ion binding
Specific function:
May function as a ferroxidase for ferrous (II) to ferric ion (III) conversion and may be involved in copper transport and homeostasis. Implicated in iron homeostasis and may mediate iron efflux associated to ferroportin 1
Gene Name:
HEPH
Uniprot ID:
Q9BQS7
Molecular weight:
130447.8
General function:
Involved in immune response
Specific function:
Binds to transferrin receptor (TFR) and reduces its affinity for iron-loaded transferrin
Gene Name:
HFE
Uniprot ID:
Q30201
Molecular weight:
40107.7
General function:
Involved in homogentisate 1,2-dioxygenase activity
Specific function:
Not Available
Gene Name:
HGD
Uniprot ID:
Q93099
Molecular weight:
49963.41
General function:
Involved in metal ion binding
Specific function:
Hydroxylates HIF-1 alpha at 'Asp-803' in the C-terminal transactivation domain (CAD). Functions as an oxygen sensor and, under normoxic conditions, the hydroxylation prevents interaction of HIF-1 with transcriptional coactivators including Cbp/p300-interacting transactivator. Involved in transcriptional repression through interaction with HIF1A, VHL and histone deacetylases. Hydroxylates specific Asn residues within ankyrin repeat domains (ARD) of NFKB1, NFKBIA, NOTCH1, ASB4, PPP1R12A and several other ARD-containing proteins. Also hydroxylates Asp and His residues within ARDs of ANK1 and TNKS2, respectively. Negatively regulates NOTCH1 activity, accelerating myogenic differentiation. Positively regulates ASB4 activity, promoting vascular differentiation.
Gene Name:
HIF1AN
Uniprot ID:
Q9NWT6
Molecular weight:
40285.25
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the cofactor-independent reversible oxidation of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG). D,L-3-hydroxyisobutyrate and L-3-hydroxybutyrate (L-3-OHB) are also substrates for HOT with 10-fold lower activities.
Gene Name:
ADHFE1
Uniprot ID:
Q8IWW8
Molecular weight:
50307.42
General function:
Involved in 4-hydroxyphenylpyruvate dioxygenase activity
Specific function:
Key enzyme in the degradation of tyrosine.
Gene Name:
HPD
Uniprot ID:
P32754
Molecular weight:
40497.105
General function:
Involved in hemoglobin binding
Specific function:
Haptoglobin combines with free plasma hemoglobin, preventing loss of iron through the kidneys and protecting the kidneys from damage by hemoglobin, while making the hemoglobin accessible to degradative enzymes
Gene Name:
HP
Uniprot ID:
P00738
Molecular weight:
45205.1
General function:
Involved in heat shock protein binding
Specific function:
May act as a co-chaperone in iron-sulfur cluster assembly in mitochondria
Gene Name:
HSCB
Uniprot ID:
Q8IWL3
Molecular weight:
27422.0
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides
Specific function:
Not Available
Gene Name:
AMDHD1
Uniprot ID:
Q96NU7
Molecular weight:
46742.505
General function:
Involved in metabolic process
Specific function:
RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'- UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA
Gene Name:
IREB2
Uniprot ID:
P48200
Molecular weight:
105043.6
General function:
Involved in structural molecule activity
Specific function:
Involved in the assembly of mitochondrial iron-sulfur proteins. Probably involved in the binding of an intermediate of Fe/S cluster assembly
Gene Name:
ISCA1
Uniprot ID:
Q9BUE6
Molecular weight:
14179.2
General function:
Involved in structural molecule activity
Specific function:
Involved in the assembly of mitochondrial iron-sulfur proteins. Probably involved in the binding of an intermediate of Fe/S cluster assembly
Gene Name:
ISCA2
Uniprot ID:
Q86U28
Molecular weight:
16476.2
General function:
Involved in iron ion binding
Specific function:
Involved in the assembly or repair of the [Fe-S] clusters present in iron-sulfur proteins. Binds iron
Gene Name:
ISCU
Uniprot ID:
Q9H1K1
Molecular weight:
17936.7

Transporters

General function:
Involved in calcium ion binding
Specific function:
Cotransporter which plays a role in lipoprotein, vitamin and iron metabolism, by facilitating their uptake. Binds to ALB, MB, Kappa and lambda-light chains, TF, hemoglobin, GC, SCGB1A1, APOA1, high density lipoprotein, and the GIF-cobalamin complex. The binding of all ligands required calcium. Serves as important transporter in several absorptive epithelia, including intestine, renal proximal tubules and embryonic yolk sac. Interaction with LRP2 mediates its trafficking throughout vesicles and facilitates the uptake of specific ligands like GC, hemoglobin, ALB, TF and SCGB1A1. Interaction with AMN controls its trafficking to the plasma membrane and facilitates endocytosis of ligands. May play an important role in the development of the peri-implantation embryo through internalization of APOA1 and cholesterol. Binds to LGALS3 at the maternal-fetal interface
Gene Name:
CUBN
Uniprot ID:
O60494
Molecular weight:
398672.8
General function:
Involved in transmembrane transport
Specific function:
Has been shown to act both as an intestinal proton- coupled high-affinity folate transporter and as an intestinal heme transporter which mediates heme uptake from the gut lumen into duodenal epithelial cells. The iron is then released from heme and may be transported into the bloodstream. Dietary heme iron is an important nutritional source of iron. Shows a higher affinity for folate than heme
Gene Name:
SLC46A1
Uniprot ID:
Q96NT5
Molecular weight:
49770.0

Only showing the first 50 proteins. There are 191 proteins in total.