You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:03:17 UTC
HMDB IDHMDB00735
Secondary Accession NumbersNone
Metabolite Identification
Common NameHydroxyphenylacetylglycine
DescriptionHydroxyphenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Hydroxyphenylacetylglycine is an endogenous human metabolite. It can be originated from the metabolism of tyramine, itself is a monoamine compound derived from the amino acid tyrosine. Hydroxyphenylacetylglycine can also be derived from the metabolism of 3,4-dihydroxyphenylalanine (L-DOPA). In the metabolism of tyrosine, this compound is involved in the reaction Hydroxyphenylacetyl-CoA + Glycine <=> Hydroxyphenylacetylglycine + CoA, catalyzed by acyltransferase enzymes (EC 2.3.1.-). Hydroxyphenylacetylglycine has been identified in human biofluids. (PMID: 14201174 , 912020 , 716472 , 7096501 , 7438429 , 7438430 ).
Structure
Thumb
Synonyms
ValueSource
P-HydroxyphenylacetylglycineChEBI
4-HydroxyphenylacetylglycineHMDB
N-[(4-Hydroxyphenyl)acetyl]-glycineHMDB
N-[(P-Hydroxyphenyl)acetyl]-glycineHMDB
[[(4-Hydroxyphenyl)acetyl]amino]acetateHMDB
[[(4-Hydroxyphenyl)acetyl]amino]acetic acidHMDB
Chemical FormulaC10H11NO4
Average Molecular Weight209.1986
Monoisotopic Molecular Weight209.068807845
IUPAC Name2-[2-(4-hydroxyphenyl)acetamido]acetic acid
Traditional Namep-hydroxyphenylacetylglycine
CAS Registry Number28116-23-6
SMILES
OC(=O)CNC(=O)CC1=CC=C(O)C=C1
InChI Identifier
InChI=1S/C10H11NO4/c12-8-3-1-7(2-4-8)5-9(13)11-6-10(14)15/h1-4,12H,5-6H2,(H,11,13)(H,14,15)
InChI KeyInChIKey=CPPDWYIPKSSNNM-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as n-acyl-aliphatic-alpha amino acids. These are alpha amino acids carrying a N-acylated aliphatic chain.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentN-acyl-aliphatic-alpha amino acids
Alternative Parents
Substituents
  • N-acyl-aliphatic-alpha amino acid
  • Phenylacetamide
  • Phenol
  • Benzenoid
  • Monocyclic benzene moiety
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
StatusDetected but not Quantified
Origin
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locationsNot Available
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility2.0 mg/mLALOGPS
logP0.46ALOGPS
logP0.2ChemAxon
logS-2ALOGPS
pKa (Strongest Acidic)3.54ChemAxon
pKa (Strongest Basic)-2.8ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area86.63 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity52.15 m3·mol-1ChemAxon
Polarizability20.13 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-056r-9610000000-cad7edd3bdf64818adaeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0a4i-1900000000-fcf6e7a0752287623324View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0a6r-7900000000-7353e482e3f45a50129aView in MoNA
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
Biological Properties
Cellular LocationsNot Available
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot Available
Normal
  • Not Applicable
details
UrineDetected but not QuantifiedNot ApplicableNot AvailableNot AvailableNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022212
KNApSAcK IDNot Available
Chemspider ID389604
KEGG Compound IDC05596
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB00735
Metagene LinkHMDB00735
METLIN IDNot Available
PubChem Compound440732
PDB IDNot Available
ChEBI ID28595
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Ramsdell HS, Baretz BH, Tanaka K: Mass spectrometric studies of twenty-one metabolically important acylglycines. Biomed Mass Spectrom. 1977 Aug;4(4):220-5. [912020 ]
  2. Tanaka K, Hine DG: Compilation of gas chromatographic retention indices of 163 metabolically important organic acids, and their use in detection of patients with organic acidurias. J Chromatogr. 1982 Apr 30;239:301-22. [7096501 ]
  3. Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T: Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980 Dec;26(13):1847-53. [7438430 ]
  4. NAKAJIMA T, SANO I: NEW METABOLITES OF P-TYRAMINE FROM THE URINE OF RATS. Biochim Biophys Acta. 1964 Jul 15;90:37-44. [14201174 ]
  5. Goodwin BL, Ruthven CR, King GS, Sandler M: Metabolism of 3, 4-dihydroxyphenylalanine, its metabolites and analogues in vivo in the rat: urinary excretion pattern. Xenobiotica. 1978 Oct;8(10):629-51. [716472 ]
  6. Tanaka K, Hine DG, West-Dull A, Lynn TB: Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980 Dec;26(13):1839-46. [7438429 ]

Enzymes

General function:
Involved in glycine N-acyltransferase activity
Specific function:
Mitochondrial acyltransferase which transfers an acyl group to the N-terminus of glycine and glutamine, although much less efficiently. Can conjugate numerous substrates to form a variety of N-acylglycines, with a preference for benzoyl-CoA over phenylacetyl-CoA as acyl donors. Thereby detoxify xenobiotics, such as benzoic acid or salicylic acid, and endogenous organic acids, such as isovaleric acid.
Gene Name:
GLYAT
Uniprot ID:
Q6IB77
Molecular weight:
18506.33
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Acyltransferase which transfers an acyl group to the N-terminus of glutamine. Can use phenylacetyl-CoA as an acyl donor.
Gene Name:
GLYATL1
Uniprot ID:
Q969I3
Molecular weight:
35100.895
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Mitochondrial acyltransferase which transfers the acyl group to the N-terminus of glycine. Conjugates numerous substrates, such as arachidonoyl-CoA and saturated medium and long-chain acyl-CoAs ranging from chain-length C8:0-CoA to C18:0-CoA, to form a variety of N-acylglycines. Shows a preference for monounsaturated fatty acid oleoyl-CoA (C18:1-CoA) as an acyl donor. Does not exhibit any activity toward C22:6-CoA and chenodeoxycholoyl-CoA, nor toward serine or alanine.
Gene Name:
GLYATL2
Uniprot ID:
Q8WU03
Molecular weight:
34277.055
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Acyltransferase which transfers the acyl group to the N- terminus of glycine
Gene Name:
GLYATL3
Uniprot ID:
Q5SZD4
Molecular weight:
32703.3
General function:
Involved in damaged DNA binding
Specific function:
Acetyltransferase required for the establishment of sister chromatid cohesion and couple the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3
Gene Name:
ESCO1
Uniprot ID:
Q5FWF5
Molecular weight:
94982.2