Human Metabolome Database Version 3.5

Showing metabocard for Glycogen (HMDB00757)

Record Information
Version 3.5
Creation Date 2005-11-16 08:48:42 -0700
Update Date 2013-02-08 17:09:16 -0700
HMDB ID HMDB00757
Secondary Accession Numbers None
Metabolite Identification
Common Name Glycogen
Description Glycogen is a highly-branched polymer of about 30,000 glucose residues and has a molecular weight between 106 and 107 daltons (4.8 million approx.). Most of Glc units are linked by alpha-1,4 glycosidic bonds, approximately 1 in 12 Glc residues also makes -1,6 glycosidic bond with a second Glc which results in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown. In hypoglycemia caused by excessive insulin, liver glycogen levels are high, but the high insulin level prevents the glycogenolysis necessary to maintain normal blood sugar levels. Glucagon is a common treatment for this type of hypoglycemia. Glycogen is a polysaccharide that is the principal storage form of glucose (Glc) in animal and human cells. Glycogen is found in the form of granules in the cytosol in many cell types. Hepatocytes (liver cells) have the highest concentration of it - up to 8% of the fresh weight in well fed state, or 100 to 120 g in an adult - giving liver a distinctive, 'starchy taste'. In the muscles, glycogen is found in a much lower concentration (1% of the muscle mass), but the total amount exceeds that in liver. Small amounts of glycogen are found in the kidneys, and even smaller amounts in certain glial cells in the brain and white blood cells.
Structure Thumb
Download: MOL | SDF | PDB | SMILES | InChI
Display: 2D Structure | 3D Structure
Synonyms
  1. Animal starch
  2. Glycogen
  3. Liver starch
  4. Lyoglycogen
  5. Phytoglycogen
Chemical Formula C24H42O21
Average Molecular Weight 666.5777
Monoisotopic Molecular Weight 666.221858406
IUPAC Name (2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-2-({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
Traditional IUPAC Name (2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-2-({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
CAS Registry Number 9005-79-2
SMILES OC[C@H]1O[C@H](OC[C@H]2O[C@H](O[C@H]3[C@H](O)[C@@H](O)[C@@H](O)O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]2O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@@H](O)[C@@H]1O
InChI Identifier InChI=1S/C24H42O21/c25-1-5-9(28)11(30)16(35)22(41-5)39-4-8-20(45-23-17(36)12(31)10(29)6(2-26)42-23)14(33)18(37)24(43-8)44-19-7(3-27)40-21(38)15(34)13(19)32/h5-38H,1-4H2/t5-,6-,7-,8-,9-,10-,11+,12+,13-,14-,15-,16-,17-,18-,19-,20-,21+,22+,23-,24-/m1/s1
InChI Key BYSGBSNPRWKUQH-UJDJLXLFSA-N
Chemical Taxonomy
Kingdom Organic Compounds
Super Class Carbohydrates and Carbohydrate Conjugates
Class Tetrasaccharides
Sub Class Tetrahexoses
Other Descriptors
  • Aliphatic Heteropolycyclic Compounds
Substituents
  • 1,2 Diol
  • Acetal
  • Glycosyl Compound
  • Hemiacetal
  • O Glycosyl Compound
  • Oxane
  • Primary Alcohol
  • Secondary Alcohol
Direct Parent Tetrahexoses
Ontology
Status Detected and Quantified
Origin
  • Drug metabolite
  • Endogenous
Biofunction
  • Component of Starch and sucrose metabolism
  • Waste products
Application Not Available
Cellular locations
  • Cytoplasm (predicted from logP)
Physical Properties
State Solid
Experimental Properties
Property Value Reference
Melting Point 270 - 280 °C Not Available
Boiling Point Not Available Not Available
Water Solubility Not Available Not Available
LogP Not Available Not Available
Predicted Properties
Property Value Source
Water Solubility 343 g/L ALOGPS
LogP -2.67 ALOGPS
LogP -8.2 ChemAxon
LogS -0.29 ALOGPS
pKa (strongest acidic) 11.19 ChemAxon
pKa (strongest basic) -3.7 ChemAxon
Hydrogen Acceptor Count 21 ChemAxon
Hydrogen Donor Count 14 ChemAxon
Polar Surface Area 347.83 A2 ChemAxon
Rotatable Bond Count 10 ChemAxon
Refractivity 133.16 ChemAxon
Polarizability 61.29 ChemAxon
Formal Charge 0 ChemAxon
Physiological Charge 0 ChemAxon
Spectra
1H NMR Spectrum
[1H,1H] 2D NMR Spectrum
[1H,13C] 2D NMR Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm (predicted from logP)
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Muscle
  • Skeletal Muscle
  • Fibroblasts
  • Neuron
  • Pancreas
  • Placenta
  • Testes
  • Kidney
  • Liver
  • Epidermis
  • Brain
  • Myelin
  • Adrenal Gland
  • Adipose Tissue
  • Adrenal Cortex
  • Adrenal Medulla
  • Nerve Cells
  • Platelet
  • Stratum Corneum
Pathways
Name SMPDB Link KEGG Link
Starch and Sucrose Metabolism SMP00058 map00500 Link_out
Normal Concentrations
Biofluid Status Value Age Sex Condition Reference
Blood Detected and Quantified
39.1 +/- 3.1 uM Adult (>18 years old) Male Normal
  • Geigy Scient...
Blood Detected and Quantified
43.3 +/- 3.4 uM Adult (>18 years old) Both Normal
  • Geigy Scient...
Urine Expected but not Quantified
Not Applicable Not Available Not Available Normal
  • Not Applicable
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease References None
Associated OMIM IDs None
DrugBank ID Not Available
DrugBank Metabolite ID DBMET00509 Link_out
Phenol Explorer Compound ID Not Available
Phenol Explorer Metabolite ID Not Available
FoodDB ID FDB022227
KNApSAcK ID Not Available
Chemspider ID 388322 Link_out
KEGG Compound ID C00182 Link_out
BioCyc ID CPD0-971 Link_out
BiGG ID Not Available
Wikipedia Link Glycogen Link_out
NuGOwiki Link HMDB00757 Link_out
Metagene Link HMDB00757 Link_out
METLIN ID 160 Link_out
PubChem Compound 439177 Link_out
PDB ID Not Available
ChEBI ID 28087 Link_out
References
Synthesis Reference Parodi A J; Krisman C R; Mordoh J In vitro synthesis of particulate glycogen from uridine diphosphate glucose. II. Some studies on the growth process. Archives of biochemistry and biophysics (1970), 141(1), 219-27.
Material Safety Data Sheet (MSDS) Download (PDF)
General References
  1. Zderic TW, Schenk S, Davidson CJ, Byerley LO, Coyle EF: Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade. Am J Physiol Endocrinol Metab. 2004 Dec;287(6):E1195-201. Epub 2004 Aug 17. Pubmed: 15315908 Link_out
  2. Schaart G, Hesselink RP, Keizer HA, van Kranenburg G, Drost MR, Hesselink MK: A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem Cell Biol. 2004 Aug;122(2):161-9. Epub 2004 Aug 3. Pubmed: 15322861 Link_out
  3. Wee SL, Williams C, Tsintzas K, Boobis L: Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005 Aug;99(2):707-14. Epub 2005 Apr 14. Pubmed: 15831796 Link_out
  4. Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U: Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr. 2004 Jun;43(3):148-59. Epub 2004 Jan 6. Pubmed: 15168037 Link_out
  5. Koopman R, Manders RJ, Jonkers RA, Hul GB, Kuipers H, van Loon LJ: Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur J Appl Physiol. 2006 Mar;96(5):525-34. Epub 2005 Dec 21. Pubmed: 16369816 Link_out
  6. Jentjens R, Jeukendrup A: Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117-44. Pubmed: 12617691 Link_out
  7. Ouwens DM, van der Zon GC, Maassen JA: Modulation of insulin-stimulated glycogen synthesis by Src Homology Phosphatase 2. Mol Cell Endocrinol. 2001 Apr 25;175(1-2):131-40. Pubmed: 11325523 Link_out
  8. Koppersmith DL, Powers JM, Hennigar GR: Angiomatoid neuroblastoma with cytoplasmic glycogen: a case report and histogenetic considerations. Cancer. 1980 Feb;45(3):553-60. Pubmed: 7353205 Link_out
  9. Kohler G, Boutellier U: Glycogen reduction in non-exercising muscle depends on blood lactate concentration. Eur J Appl Physiol. 2004 Aug;92(4-5):548-54. Pubmed: 15170570 Link_out
  10. Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR: PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest. 2003 May;111(9):1423-32. Pubmed: 12727934 Link_out
  11. Dube SN, Nayak BB, Das PK: Effect of foot-electroshock stress on cholinergic activity, tissue glycogen and blood sugar in albino rats. Indian J Physiol Pharmacol. 1978 Jan-Mar;22(1):24-32. Pubmed: 567191 Link_out
  12. Chryssanthopoulos C, Williams C, Nowitz A, Bogdanis G: Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci. 2004 Nov-Dec;22(11-12):1065-71. Pubmed: 15801500 Link_out
  13. Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA, Stapleton D, Kemp BE: Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab. 2006 Jun;31(3):302-12. Pubmed: 16770359 Link_out
  14. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T, Hardie DG: A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol. 2003 May 13;13(10):861-6. Pubmed: 12747836 Link_out
  15. van Loon LJ, Murphy R, Oosterlaar AM, Cameron-Smith D, Hargreaves M, Wagenmakers AJ, Snow R: Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci (Lond). 2004 Jan;106(1):99-106. Pubmed: 14507259 Link_out
  16. Tomihira M, Kawasaki E, Nakajima H, Imamura Y, Sato Y, Sata M, Kage M, Sugie H, Nunoi K: Intermittent and recurrent hepatomegaly due to glycogen storage in a patient with type 1 diabetes: genetic analysis of the liver glycogen phosphorylase gene (PYGL). Diabetes Res Clin Pract. 2004 Aug;65(2):175-82. Pubmed: 15223230 Link_out
  17. McVie-Wylie AJ, Ding EY, Lawson T, Serra D, Migone FK, Pressley D, Mizutani M, Kikuchi T, Chen YT, Amalfitano A: Multiple muscles in the AMD quail can be "cross-corrected" of pathologic glycogen accumulation after intravenous injection of an [E1-, polymerase-] adenovirus vector encoding human acid-alpha-glucosidase. J Gene Med. 2003 May;5(5):399-406. Pubmed: 12731088 Link_out
  18. Price TB, Laurent D, Petersen KF: 13C/31P NMR studies on the role of glucose transport/phosphorylation in human glycogen supercompensation. Int J Sports Med. 2003 May;24(4):238-44. Pubmed: 12784164 Link_out
  19. Tanis AA, Rietveld T, Wattimena JL, van den Berg JW, Swart GR: The 13CO2 breath test for liver glycogen oxidation after 3-day labeling of the liver with a naturally 13C-enriched diet. Nutrition. 2003 May;19(5):432-7. Pubmed: 12714096 Link_out
  20. Devries MC, Hamadeh MJ, Graham TE, Tarnopolsky MA: 17beta-estradiol supplementation decreases glucose rate of appearance and disappearance with no effect on glycogen utilization during moderate intensity exercise in men. J Clin Endocrinol Metab. 2005 Nov;90(11):6218-25. Epub 2005 Aug 23. Pubmed: 16118338 Link_out

Enzymes
Name: Glycogen debranching enzyme
Reactions: Not Available
Gene Name: AGL
Uniprot ID: P35573 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Glycogen phosphorylase, brain form
Reactions: Not Available
Gene Name: PYGB
Uniprot ID: P11216 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Glycogenin-2
Reactions: Not Available
Gene Name: GYG2
Uniprot ID: O15488 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Serine/threonine-protein phosphatase PP1-beta catalytic subunit
Reactions: Not Available
Gene Name: PPP1CB
Uniprot ID: P62140 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Laforin
Reactions: Not Available
Gene Name: EPM2A
Uniprot ID: O95278 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Serine/threonine-protein phosphatase PP1-gamma catalytic subunit
Reactions: Not Available
Gene Name: PPP1CC
Uniprot ID: P36873 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Alpha-amylase 1
Reactions: Not Available
Gene Name: AMY1A
Uniprot ID: P04745 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Maltase-glucoamylase, intestinal
Reactions: Not Available
Gene Name: MGAM
Uniprot ID: O43451 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Glucan , branching enzyme 1 variant
Reactions: Not Available
Gene Name: Not Available
Uniprot ID: Q59ET0 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Serine/threonine-protein phosphatase PP1-alpha catalytic subunit
Reactions: Not Available
Gene Name: PPP1CA
Uniprot ID: P62136 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Protein phosphatase 1 regulatory subunit 3C
Reactions: Not Available
Gene Name: PPP1R3C
Uniprot ID: Q9UQK1 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA
Name: Protein phosphatase 1 regulatory subunit 3B
Reactions: Not Available
Gene Name: PPP1R3B
Uniprot ID: Q86XI6 Link_out
Protein Sequence: FASTA
Gene Sequence: FASTA