You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-08-17 21:43:17 UTC
HMDB IDHMDB00827
Secondary Accession NumbersNone
Metabolite Identification
Common NameStearic acid
DescriptionStearic acid, also called octadecanoic acid, is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. It is a waxy solid, and its chemical formula is CH3(CH2)16COOH. Its name comes from the Greek word stear, which means tallow. Its IUPAC name is octadecanoic acid. -- Wikipedia.
Structure
Thumb
Synonyms
ValueSource
StearateKegg
1-HeptadecanecarboxylateHMDB
1-Heptadecanecarboxylic acidHMDB
N-OctadecanoateHMDB
N-Octadecanoic acidHMDB
OctadecanoateHMDB
Octadecanoic acidHMDB
Stearex beadsHMDB
Stearic acid cherryHMDB
StearophanateHMDB
Stearophanic acidHMDB
Chemical FormulaC18H36O2
Average Molecular Weight284.4772
Monoisotopic Molecular Weight284.271530396
IUPAC Nameoctadecanoic acid
Traditional Namestearic acid
CAS Registry Number57-11-4
SMILES
CCCCCCCCCCCCCCCCCC(O)=O
InChI Identifier
InChI=1S/C18H36O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h2-17H2,1H3,(H,19,20)
InChI KeyInChIKey=QIQXTHQIDYTFRH-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentLong-chain fatty acids
Alternative Parents
Substituents
  • Long-chain fatty acid
  • Straight chain fatty acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point68.8 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.000597 mg/mLNot Available
LogP8.23SANGSTER (1993)
Predicted Properties
PropertyValueSource
Water Solubility6.61e-05 mg/mLALOGPS
logP8.02ALOGPS
logP7.15ChemAxon
logS-6.6ALOGPS
pKa (Strongest Acidic)4.95ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 Å2ChemAxon
Rotatable Bond Count16ChemAxon
Refractivity86.29 m3·mol-1ChemAxon
Polarizability38.64 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (1 TMS)splash10-0159-1900000000-9cc966384906cd35537dView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0159-0900000000-b87a9955374d11966ba6View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (1 TMS)splash10-0100-9700000000-979da356343fa0697993View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 TMS)splash10-0159-2901000000-16194c704b7abd193647View in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-001i-0090000000-1368043827a20e28c172View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-001i-0090000000-5c3fa1d38cf3d0a38d74View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014r-0090000000-34a309d09cb2def46a19View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00kr-4690000000-f68e827f7ebccd80d5bfView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-8920000000-2e865f09d760af582c07View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014r-0090000000-34a309d09cb2def46a19View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00kr-4690000000-f68e827f7ebccd80d5bfView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-8920000000-2e865f09d760af582c07View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-0090000000-b3ce35f839a30b41c718View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00m0-1090000000-bbb339a3dbe1b9ba0d54View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9240000000-1b84b49819fa37fce1aeView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-0090000000-b3ce35f839a30b41c718View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00m0-1090000000-bbb339a3dbe1b9ba0d54View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9240000000-1b84b49819fa37fce1aeView in MoNA
MSMass Spectrum (Electron Ionization)splash10-0c03-9200000000-5dd52f837d56d80fa968View in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Location
  • Adipose Tissue
  • Brain
  • Erythrocyte
  • Fibroblasts
  • Intestine
  • Muscle
  • Myelin
  • Neuron
  • Placenta
  • Platelet
  • Prostate
  • Skin
  • Stratum Corneum
Pathways
NameSMPDB LinkKEGG Link
Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty AcidsSMP00482Not Available
Plasmalogen SynthesisSMP00479Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified85 (31-470) uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified48.8 +/- 21 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified41.119 +/- 5.521 uMAdult (>18 years old)BothNormal details
BloodDetected but not QuantifiedNot ApplicableAdult (>18 years old)Female
Normal
details
BloodDetected and Quantified22.1 +/- 0.035 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified10.0 +/- 10.0 uMAdult (>18 years old)Not SpecifiedNormal details
FecesDetected but not QuantifiedNot ApplicableNot SpecifiedNot Specified
Normal
details
FecesDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothNormal details
FecesDetected but not QuantifiedNot ApplicableChildren (1-13 years old)BothNormal details
FecesDetected but not QuantifiedNot ApplicableAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot ApplicableNot SpecifiedNot Specified
Normal
details
FecesDetected and Quantified71.429 +/- 129.114 uMNot SpecifiedNot Specified
Normal
details
FecesDetected and Quantified44.995 +/- 75.226 uMNot SpecifiedNot Specified
Normal
details
SalivaDetected and Quantified6.88 +/- 1.23 uMAdult (>18 years old)BothNormal
    • Zerihun T. Dame, ...
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Not SpecifiedNormal details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothNormal details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Both
Normal
    • Zerihun T. Dame, ...
details
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothNormal details
UrineDetected and Quantified3.36 +/- 2.82 umol/mmol creatinineAdult (>18 years old)BothNot Available details
UrineDetected and Quantified18.703 +/- 7.698 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Normal
    • Mordechai, Hien, ...
details
UrineDetected but not QuantifiedNot ApplicableAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0.32-0.82 umol/mmol creatinineAdult (>18 years old)FemaleNormal details
UrineDetected and Quantified2.9 (1.6-6.6) umol/mmol creatinineAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.10 +/- 0.03 umol/mmol creatinineAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
UrineDetected and Quantified0.35-0.50 umol/mmol creatinineAdult (>18 years old)MaleNormal details
UrineDetected and Quantified3.9(2.3-7.7) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot ApplicableAdult (>18 years old)Female
Breast cancer
details
FecesDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothCCD details
FecesDetected but not QuantifiedNot ApplicableAdult (>18 years old)BothICD details
UrineDetected and Quantified26.428 +/- 22.351 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Mordechai, Hien, ...
details
UrineDetected and Quantified33.059 +/- 25.405 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Gastroesophageal reflux disease
    • Mordechai, Hien, ...
details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB03193
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB002941
KNApSAcK IDC00032087
Chemspider ID5091
KEGG Compound IDC01530
BioCyc IDSTEARIC_ACID
BiGG ID37799
Wikipedia LinkStearic acid
NuGOwiki LinkHMDB00827
Metagene LinkHMDB00827
METLIN ID189
PubChem Compound5281
PDB IDSTE
ChEBI ID28842
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. [8412012 ]
  2. Crocker I, Lawson N, Daniels I, Baker P, Fletcher J: Significance of fatty acids in pregnancy-induced immunosuppression. Clin Diagn Lab Immunol. 1999 Jul;6(4):587-93. [10391868 ]
  3. Katsuta Y, Iida T, Inomata S, Denda M: Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J Invest Dermatol. 2005 May;124(5):1008-13. [15854043 ]
  4. Sanjurjo P, Rodriguez-Alarcon J, Rodriguez-Soriano J: Plasma fatty acid composition during the first week of life following feeding with human milk or formula. Acta Paediatr Scand. 1988 Mar;77(2):202-6. [3354331 ]
  5. Neoptolemos JP, Thomas BS: Erythrocyte membrane stearic acid: oleic acid ratios in colorectal cancer using tube capillary column gas liquid chromatography. Ann Clin Biochem. 1990 Jan;27 ( Pt 1):38-43. [2310156 ]
  6. Turpeinen AM, Wubert J, Aro A, Lorenz R, Mutanen M: Similar effects of diets rich in stearic acid or trans-fatty acids on platelet function and endothelial prostacyclin production in humans. Arterioscler Thromb Vasc Biol. 1998 Feb;18(2):316-22. [9484999 ]
  7. Daubresse JC: [Atherosclerosis and nutrition] Rev Med Brux. 2000 Sep;21(4):A359-62. [11068494 ]
  8. Hoppu U, Rinne M, Lampi AM, Isolauri E: Breast milk fatty acid composition is associated with development of atopic dermatitis in the infant. J Pediatr Gastroenterol Nutr. 2005 Sep;41(3):335-8. [16131990 ]
  9. Musial W, Kubis A: Preliminary assessment of alginic acid as a factor buffering triethanolamine interacting with artificial skin sebum. Eur J Pharm Biopharm. 2003 Mar;55(2):237-40. [12637103 ]
  10. Doran TA, Ford JA, Allen LC, Wong PY, Benzie RJ: Amniotic fluid lecithin/sphingomyelin ratio, palmitic acid, palmitic acid/stearic acid ratio, total cortisol, creatinine, and percentage of lipid-positive cells in assessment of fetal maturity and fetal pulmonary maturity: a comparison. Am J Obstet Gynecol. 1979 Feb 1;133(3):302-7. [433991 ]
  11. Kazmierczak SC, Gurachevsky A, Matthes G, Muravsky V: Electron spin resonance spectroscopy of serum albumin: a novel new test for cancer diagnosis and monitoring. Clin Chem. 2006 Nov;52(11):2129-34. Epub 2006 Sep 21. [16990414 ]
  12. Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Abedin L, Li D: A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males. Eur J Clin Nutr. 2001 Feb;55(2):88-96. [11305631 ]
  13. Diani F, Cacco M, Molinaroli A, Cerruti G, Meloncelli C, Turinetto A: [Fatty acid composition of the cervical mucus obtained during ovulation and at the term of pregnancy] Minerva Ginecol. 1998 Oct;50(10):405-10. [9866950 ]

Only showing the first 50 proteins. There are 72 proteins in total.

Enzymes

General function:
Involved in transferase activity
Specific function:
Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities and an acyl carrier protein.
Gene Name:
FASN
Uniprot ID:
P49327
Molecular weight:
273424.06
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle.
Gene Name:
PLA2G5
Uniprot ID:
P39877
Molecular weight:
15674.065
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference.
Gene Name:
PLA2G2F
Uniprot ID:
Q9BZM2
Molecular weight:
23256.29
General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G1B
Uniprot ID:
P04054
Molecular weight:
16359.535
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine.
Gene Name:
PLA2G10
Uniprot ID:
O15496
Molecular weight:
18153.04
General function:
Involved in sugar binding
Specific function:
Has lysophospholipase activity.
Gene Name:
LGALS13
Uniprot ID:
Q9UHV8
Molecular weight:
16118.44
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a preference for arachidonic-containing phospholipids.
Gene Name:
PLA2G2E
Uniprot ID:
Q9NZK7
Molecular weight:
15988.525
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Does not exhibit detectable activity toward sn-2-arachidonoyl- or linoleoyl-phosphatidylcholine or -phosphatidylethanolamine.
Gene Name:
PLA2G12A
Uniprot ID:
Q9BZM1
Molecular weight:
21066.99
General function:
Involved in metabolic process
Specific function:
Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide-induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose-stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2-induced chemotaxis through regulation of F-actin polymerization at the pseudopods. Isoform ankyrin-iPLA2-1 and isoform ankyrin-iPLA2-2, which lack the catalytic domain, are probably involved in the negative regulation of iPLA2 activity.
Gene Name:
PLA2G6
Uniprot ID:
O60733
Molecular weight:
84092.635
General function:
Involved in sugar binding
Specific function:
May have both lysophospholipase and carbohydrate-binding activities.
Gene Name:
CLC
Uniprot ID:
Q05315
Molecular weight:
16452.785
General function:
Involved in phospholipase A2 activity
Specific function:
Thought to participate in the regulation of the phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G2A
Uniprot ID:
P14555
Molecular weight:
16082.525
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined.
Gene Name:
PLA2G2D
Uniprot ID:
Q9UNK4
Molecular weight:
16546.1
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
PNLIP
Uniprot ID:
P16233
Molecular weight:
51156.48
General function:
Involved in catalytic activity
Specific function:
Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin.
Gene Name:
LIPC
Uniprot ID:
P11150
Molecular weight:
55914.1
General function:
Involved in catalytic activity
Specific function:
May function as inhibitor of dietary triglyceride digestion. Lacks detectable lipase activity towards triglycerides, diglycerides, phosphatidylcholine, galactolipids or cholesterol esters (in vitro) (By similarity).
Gene Name:
PNLIPRP1
Uniprot ID:
P54315
Molecular weight:
Not Available
General function:
Involved in metabolic process
Specific function:
Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities.
Gene Name:
PNPLA3
Uniprot ID:
Q9NST1
Molecular weight:
52864.64
General function:
Involved in lipid metabolic process
Specific function:
Not Available
Gene Name:
LIPF
Uniprot ID:
P07098
Molecular weight:
45237.375
General function:
Involved in catalytic activity
Specific function:
Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin.
Gene Name:
LIPG
Uniprot ID:
Q9Y5X9
Molecular weight:
56794.275
General function:
Lipid transport and metabolism
Specific function:
Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.
Gene Name:
CEL
Uniprot ID:
P19835
Molecular weight:
79666.385
General function:
Involved in catalytic activity
Specific function:
Lipase with broad substrate specificity. Can hydrolyze both phospholipids and galactolipids. Acts preferentially on monoglycerides, phospholipids and galactolipids. Contributes to milk fat hydrolysis.
Gene Name:
PNLIPRP2
Uniprot ID:
P54317
Molecular weight:
52077.475
General function:
Involved in catalytic activity
Specific function:
The primary function of this lipase is the hydrolysis of triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium (By similarity).
Gene Name:
LPL
Uniprot ID:
P06858
Molecular weight:
53162.07
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular weight:
62520.62
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine.
Gene Name:
CES2
Uniprot ID:
O00748
Molecular weight:
68898.39
General function:
Involved in carboxylesterase activity
Specific function:
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.
Gene Name:
BCHE
Uniprot ID:
P06276
Molecular weight:
68417.575
General function:
Involved in metabolic process
Specific function:
Has a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid.
Gene Name:
PLA2G4C
Uniprot ID:
Q9UP65
Molecular weight:
60938.07
General function:
Involved in hydrolase activity
Specific function:
In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production.
Gene Name:
LIPE
Uniprot ID:
Q05469
Molecular weight:
116596.715
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Shows an 11-fold preference for phosphatidylglycerol over phosphatidylcholine (PC). Preferential cleavage: 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine (PE) > 1-palmitoyl-2-linoleoyl-PC > 1-palmitoyl-2-arachidonoyl-PC > 1-palmitoyl-2-arachidonoyl-PE. Plays a role in ciliogenesis.
Gene Name:
PLA2G3
Uniprot ID:
Q9NZ20
Molecular weight:
57166.51
General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
General function:
Involved in acylphosphatase activity
Specific function:
Its physiological role is not yet clear.
Gene Name:
ACYP2
Uniprot ID:
P14621
Molecular weight:
11139.52
General function:
Involved in acylphosphatase activity
Specific function:
Its physiological role is not yet clear.
Gene Name:
ACYP1
Uniprot ID:
P07311
Molecular weight:
11260.84
General function:
Involved in metallopeptidase activity
Specific function:
Involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate).
Gene Name:
ACY1
Uniprot ID:
Q03154
Molecular weight:
45884.705
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate. NAA occurs in high concentration in brain and its hydrolysis NAA plays a significant part in the maintenance of intact white matter. In other tissues it act as a scavenger of NAA from body fluids.
Gene Name:
ASPA
Uniprot ID:
P45381
Molecular weight:
35734.79
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Plays an important role in deacetylating mercapturic acids in kidney proximal tubules (By similarity).
Gene Name:
ACY3
Uniprot ID:
Q96HD9
Molecular weight:
Not Available
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May play an important physiological function in brain. May play a regulatory role by modulating the cellular levels of fatty acyl-CoA ligands for certain transcription factors as well as the substrates for fatty acid metabolizing enzymes, contributing to lipid homeostasis. Has broad specificity, active towards fatty acyl-CoAs with chain-lengths of C8-C18. Has a maximal activity toward palmitoyl-CoA.
Gene Name:
ACOT7
Uniprot ID:
O00154
Molecular weight:
40454.945
Reactions
Stearoyl-CoA + Water → Coenzyme A + Stearic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Displays high levels of activity on medium- and long chain acyl CoAs.
Gene Name:
ACOT2
Uniprot ID:
P49753
Molecular weight:
53218.02
Reactions
Stearoyl-CoA + Water → Coenzyme A + Stearic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity). Succinyl-CoA thioesterase that also hydrolyzes long chain saturated and unsaturated monocarboxylic acyl-CoAs.
Gene Name:
ACOT4
Uniprot ID:
Q8N9L9
Molecular weight:
46326.09
Reactions
Stearoyl-CoA + Water → Coenzyme A + Stearic aciddetails
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N-acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.
Gene Name:
ACOT8
Uniprot ID:
O14734
Molecular weight:
35914.02
General function:
Involved in lipid metabolic process
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid.
Gene Name:
ASAH1
Uniprot ID:
Q13510
Molecular weight:
44045.27
General function:
Involved in protein kinase activity
Specific function:
May play a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. May be involved in malignant squamous cell tumor formation
Gene Name:
HIPK1
Uniprot ID:
Q86Z02
Molecular weight:
130841.6
General function:
Involved in DNA binding
Specific function:
Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis
Gene Name:
PPARG
Uniprot ID:
P37231
Molecular weight:
57619.6
General function:
Involved in catalytic activity
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. Thought to function as the predominant fatty acid protein transporter in heart
Gene Name:
SLC27A6
Uniprot ID:
Q9Y2P4
Molecular weight:
70111.0
General function:
Involved in catalytic activity
Specific function:
Has acyl-CoA ligase activity for long-chain and very- long-chain fatty acids. Does not exhibit fatty acid transport activity
Gene Name:
SLC27A3
Uniprot ID:
Q5K4L6
Molecular weight:
78643.4
General function:
Involved in metabolic process
Specific function:
Lipid hydrolase.
Gene Name:
PNPLA4
Uniprot ID:
P41247
Molecular weight:
27980.17
General function:
Involved in catalytic activity
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. Appears to be the principal fatty acid transporter in small intestinal enterocytes. Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A4
Uniprot ID:
Q6P1M0
Molecular weight:
72063.6
General function:
Involved in asparaginase activity
Specific function:
Exhibits lysophospholipase, transacylase, PAF acetylhydrolase and asparaginase activities.
Gene Name:
ASPG
Uniprot ID:
Q86U10
Molecular weight:
60882.4
General function:
Involved in hydrolase activity
Specific function:
Membrane-associated phospholipase. Exhibits a calcium-independent broad substrate specificity including phospholipase A2/lysophospholipase activity. Preferential hydrolysis at the sn-2 position of diacylphospholipids and diacyglycerol, whereas it shows no positional specificity toward triacylglycerol. Exhibits also esterase activity toward p-nitrophenyl. May act on the brush border membrane to facilitate the absorption of digested lipids (By similarity).
Gene Name:
PLB1
Uniprot ID:
Q6P1J6
Molecular weight:
161711.9
General function:
Involved in metabolic process
Specific function:
Catalyzes the initial step in triglyceride hydrolysis in adipocyte and non-adipocyte lipid droplets. Also has acylglycerol transacylase activity. May act coordinately with LIPE/HLS within the lipolytic cascade. Regulates adiposome size and may be involved in the degradation of adiposomes. May play an important role in energy homeostasis. May play a role in the response of the organism to starvation, enhancing hydrolysis of triglycerides and providing free fatty acids to other tissues to be oxidized in situations of energy depletion.
Gene Name:
PNPLA2
Uniprot ID:
Q96AD5
Molecular weight:
55315.245
General function:
Involved in metabolic process
Specific function:
Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. Not arachidonic acid-specific but has linoleic acid-specific activity. May play a role in inflammation in psoriatic lesions.
Gene Name:
PLA2G4D
Uniprot ID:
Q86XP0
Molecular weight:
91951.405
General function:
Involved in metabolic process
Specific function:
Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position (By similarity).
Gene Name:
PLA2G4E
Uniprot ID:
Q3MJ16
Molecular weight:
99189.335

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5

Only showing the first 50 proteins. There are 72 proteins in total.