You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2014-10-09 18:45:27 UTC
HMDB IDHMDB00876
Secondary Accession NumbersNone
Metabolite Identification
Common NameVitamin D3
DescriptionVitamin D3 is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. It is structurally similar to steroids such as testosterone, cholesterol, and cortisol (though vitamin D3 itself is a secosteroid).
Structure
Thumb
Synonyms
  1. (+)-Vitamin D3
  2. (3beta,Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol
  3. (5E,7E)-9,10-Secocholesta-5,7,10-trien-3-ol
  4. 3-beta,Z,7E-9,10-Secocholestr-5,7,10(19)-trien-3-ol
  5. 9,10-Secocholesta-5,7,10(19)-trien-3-beta-ol
  6. 9,10-Secocholesta-5,7,10(19)-trien-3-ol
  7. 9,10-Secocholesta-5,7,10-trien-3-ol
  8. Arachitol
  9. Calciol
  10. CC
  11. Cholecalciferol
  12. Cholecalciferol D3
  13. Colecalciferol
  14. D3-Vigantol
  15. Delsterol
  16. Deparal
  17. Devaron
  18. Ebivit
  19. FeraCol
  20. Granuvit D3
  21. Micro-dee
  22. Oleovitamin D3
  23. Provitina
  24. Quintox
  25. Ricketon
  26. Trivitan
  27. Vi-De3
  28. VidDe-3-hydrosol
  29. Videkhol
  30. Vigantol
  31. Vigorsan
  32. Vitinc Dan-Dee-3
Chemical FormulaC27H44O
Average Molecular Weight384.6377
Monoisotopic Molecular Weight384.33921603
IUPAC Name(1S,3Z)-3-{2-[(1R,4E,7aR)-7a-methyl-1-[(2R)-6-methylheptan-2-yl]-octahydro-1H-inden-4-ylidene]ethylidene}-4-methylidenecyclohexan-1-ol
Traditional Namecholecalciferol
CAS Registry Number67-97-0
SMILES
CC(C)CCC[C@@H](C)[C@H]1CCC2\C(CCC[C@]12C)=C\C=C1\C[C@@H](O)CCC1=C
InChI Identifier
InChI=1S/C27H44O/c1-19(2)8-6-9-21(4)25-15-16-26-22(10-7-17-27(25,26)5)12-13-23-18-24(28)14-11-20(23)3/h12-13,19,21,24-26,28H,3,6-11,14-18H2,1-2,4-5H3/b22-12+,23-13-/t21-,24+,25-,26?,27-/m1/s1
InChI KeyQYSXJUFSXHHAJI-QWSSABAFSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassPrenol Lipids
Sub ClassSesterterpenes
Other Descriptors
  • Aliphatic Homopolycyclic Compounds
  • Vitamin D and Derivatives
Substituents
  • Cyclic Alcohol
  • Cyclohexane
  • Secondary Alcohol
  • Steroid
Direct ParentSesterterpenes
Ontology
StatusDetected and Quantified
Origin
  • Drug
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Essential vitamins
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Mitochondria
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point84.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.800E-04 g/LALOGPS
logP7.98ALOGPS
logP7.13ChemAxon
logS-6ALOGPS
pKa (Strongest Acidic)18.38ChemAxon
pKa (Strongest Basic)-1.3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity123.22ChemAxon
Polarizability49.39ChemAxon
Spectra
Spectra1D NMR2D NMR
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Mitochondria
Biofluid Locations
  • Blood
  • Saliva
Tissue Location
  • Fibroblasts
  • Gonads
  • Intestine
  • Keratinocyte
  • Kidney
  • Liver
  • Liver Parathyroid Gland
  • Placenta
  • Prostate
  • Skin
  • Spleen
  • Stratum Corneum
Pathways
NameSMPDB LinkKEGG Link
Steroid BiosynthesisSMP00023map00100
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.0060 +/- 0.0042 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.0681 +/- 0.01880 uMAdult (>18 years old)BothNormal details
SalivaDetected and Quantified0.006 +/- 0.003 uMAdult (>18 years old)BothNormal
    • Dame, ZT. et al. ...
details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.0037 +/- 0.0016 uMAdult (>18 years old)BothAnephrism details
Associated Disorders and Diseases
Disease References
Anephric patients
  1. Shepard RM, Horst RL, Hamstra AJ, DeLuca HF: Determination of vitamin D and its metabolites in plasma from normal and anephric man. Biochem J. 1979 Jul 15;182(1):55-69. Pubmed: 227368
Associated OMIM IDsNone
DrugBank IDDB00169
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB012732
KNApSAcK IDNot Available
Chemspider ID9058792
KEGG Compound IDC05443
BioCyc IDVITAMIN_D_%7B3%7D
BiGG ID2288999
Wikipedia LinkVitamin D3
NuGOwiki LinkHMDB00876
Metagene LinkHMDB00876
METLIN ID222
PubChem Compound10883523
PDB IDNot Available
ChEBI ID283119
References
Synthesis ReferenceNemoto, Hideo; Kurobe, Hiroshi; Fukumoto, Keiichiro; Kametani, Tetsuji. A modified synthesis of the (+)-8a-phenylsulfonyl-des-AB-cholestane via an intramolecular nucleophilic attack to epoxide - a total synthesis of vitamin D3. Heterocycles (1985), 23(3),
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Flanagan JN, Young MV, Persons KS, Wang L, Mathieu JS, Whitlatch LW, Holick MF, Chen TC: Vitamin D metabolism in human prostate cells: implications for prostate cancer chemoprevention by vitamin D. Anticancer Res. 2006 Jul-Aug;26(4A):2567-72. Pubmed: 16886665
  2. Rautureau M, Rambaud JC: Aqueous solubilisation of vitamin D3 in normal man. Gut. 1981 May;22(5):393-7. Pubmed: 6265326
  3. Shepard RM, Horst RL, Hamstra AJ, DeLuca HF: Determination of vitamin D and its metabolites in plasma from normal and anephric man. Biochem J. 1979 Jul 15;182(1):55-69. Pubmed: 227368
  4. Osborne JE, Hutchinson PE: Vitamin D and systemic cancer: is this relevant to malignant melanoma? Br J Dermatol. 2002 Aug;147(2):197-213. Pubmed: 12174089
  5. Haddad JG, Jennings AS, Aw TC: Vitamin D uptake and metabolism by perfused rat liver: influences of carrier proteins. Endocrinology. 1988 Jul;123(1):498-504. Pubmed: 2838261
  6. Kida K, Goodman DS: Studies on the transport of vitamin D and of 25-hydroxyvitamin D in human plasma. J Lipid Res. 1976 Sep;17(5):485-90. Pubmed: 184223
  7. Lips P: Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001 Aug;22(4):477-501. Pubmed: 11493580
  8. Svendsen ML, Daneels G, Geysen J, Binderup L, Kragballe K: Proliferation and differentiation of cultured human keratinocytes is modulated by 1,25(OH)2D3 and synthetic vitamin D3 analogues in a cell density-, calcium- and serum-dependent manner. Pharmacol Toxicol. 1997 Jan;80(1):49-56. Pubmed: 9148283
  9. Yetgin S, Yalcin SS: The effect of vitamin D3 on CD34 progenitor cells in vitamin D deficiency rickets. Turk J Pediatr. 2004 Apr-Jun;46(2):164-6. Pubmed: 15214747
  10. Astecker N, Reddy GS, Herzig G, Vorisek G, Schuster I: 1alpha,25-Dihydroxy-3-epi-vitamin D3 a physiological metabolite of 1alpha,25-dihydroxyvitamin D3: its production and metabolism in primary human keratinocytes. Mol Cell Endocrinol. 2000 Dec 22;170(1-2):91-101. Pubmed: 11162893
  11. Murao N, Ohishi N, Nabuchi Y, Ishigai M, Kawanishi T, Aso Y: The determination of 2beta-(3-hydroxypropoxy)-1alpha,25-dihydroxy vitamin D3 (ED-71) in human serum by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Sep 5;823(2):61-8. Epub 2004 Nov 19. Pubmed: 16102526
  12. Lippens S, Kockx M, Denecker G, Knaapen M, Verheyen A, Christiaen R, Tschachler E, Vandenabeele P, Declercq W: Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am J Pathol. 2004 Sep;165(3):833-41. Pubmed: 15331408
  13. Bjorkhem I, Holmberg I, Kristiansen T, Pedersen JI: Assay of 1,25-dihydroxy vitamin D3 by isotope dilution--mass fragmentography. Clin Chem. 1979 Apr;25(4):584-8. Pubmed: 466767
  14. Matsuoka LY, McConnachie P, Wortsman J, Holick MF: Immunological responses to ultraviolet light B radiation in Black individuals. Life Sci. 1999;64(17):1563-9. Pubmed: 10353621
  15. Zimber A, Chedeville A, Abita JP, Barbu V, Gespach C: Functional interactions between bile acids, all-trans retinoic acid, and 1,25-dihydroxy-vitamin D3 on monocytic differentiation and myeloblastin gene down-regulation in HL60 and THP-1 human leukemia cells. Cancer Res. 2000 Feb 1;60(3):672-8. Pubmed: 10676652
  16. Baggio B, Budakovic A, Nassuato MA, Vezzoli G, Manzato E, Luisetto G, Zaninotto M: Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 2000 Sep;58(3):1278-84. Pubmed: 10972691
  17. MacLaughlin J, Holick MF: Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985 Oct;76(4):1536-8. Pubmed: 2997282
  18. Lee YF, Young WJ, Lin WJ, Shyr CR, Chang C: Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J Biol Chem. 1999 Jun 4;274(23):16198-205. Pubmed: 10347174
  19. Okano T, Kuroda E, Nakao H, Kodama S, Matsuo T, Nakamichi Y, Nakajima K, Hirao N, Kobayashi T: Lack of evidence for existence of vitamin D and 25-hydroxyvitamin D sulfates in human breast and cow's milk. J Nutr Sci Vitaminol (Tokyo). 1986 Oct;32(5):449-62. Pubmed: 3494111
  20. Mata-Granados JM, Caballo-Lopez A, Luque de Castro MD, Quesada JM: Automated method for the determination of vitamin D3 hydroxymetabolites in serum. Anal Bioanal Chem. 2003 Sep;377(2):287-92. Epub 2003 Jul 9. Pubmed: 12955389
  21. Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. Pubmed: 15531486

Enzymes

General function:
Involved in transcription coactivator activity
Specific function:
Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. Interacts with PSMB9.
Gene Name:
NCOA3
Uniprot ID:
Q9Y6Q9
Molecular weight:
154399.59
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the side-chain cleavage reaction of cholesterol to pregnenolone.
Gene Name:
CYP11A1
Uniprot ID:
P05108
Molecular weight:
60101.87
References
  1. Tuckey RC, Janjetovic Z, Li W, Nguyen MN, Zmijewski MA, Zjawiony J, Slominski A: Metabolism of 1alpha-hydroxyvitamin D3 by cytochrome P450scc to biologically active 1alpha,20-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 2008 Dec;112(4-5):213-9. Epub 2008 Oct 21. Pubmed: 19000766
  2. Tuckey RC, Nguyen MN, Slominski A: Kinetics of vitamin D3 metabolism by cytochrome P450scc (CYP11A1) in phospholipid vesicles and cyclodextrin. Int J Biochem Cell Biol. 2008;40(11):2619-26. Epub 2008 May 20. Pubmed: 18573681
  3. Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW: A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14754-9. Epub 2003 Dec 1. Pubmed: 14657394
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Schuster I: Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011 Jan;1814(1):186-99. Epub 2010 Jul 7. Pubmed: 20619365
  2. Ohyama Y, Yamasaki T: Eight cytochrome P450s catalyze vitamin D metabolism. Front Biosci. 2004 Sep 1;9:3007-18. Pubmed: 15353333
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the first step in the oxidation of the side chain of sterol intermediates; the 27-hydroxylation of 5-beta-cholestane-3-alpha,7-alpha,12-alpha-triol. Has also a vitamin D3-25-hydroxylase activity.
Gene Name:
CYP27A1
Uniprot ID:
Q02318
Molecular weight:
60234.28
References
  1. Lehmann B, Tiebel O, Meurer M: Expression of vitamin D3 25-hydroxylase (CYP27) mRNA after induction by vitamin D3 or UVB radiation in keratinocytes of human skin equivalents--a preliminary study. Arch Dermatol Res. 1999 Sep;291(9):507-10. Pubmed: 10541881
  2. Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K: Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun. 2004 Jul 16;320(1):156-64. Pubmed: 15207715
  3. Uchida E, Kagawa N, Sakaki T, Urushino N, Sawada N, Kamakura M, Ohta M, Kato S, Inouye K: Purification and characterization of mouse CYP27B1 overproduced by an Escherichia coli system coexpressing molecular chaperonins GroEL/ES. Biochem Biophys Res Commun. 2004 Oct 15;323(2):505-11. Pubmed: 15369780
  4. Sakaki T, Kagawa N, Yamamoto K, Inouye K: Metabolism of vitamin D3 by cytochromes P450. Front Biosci. 2005 Jan 1;10:119-34. Print 2005 Jan 1. Pubmed: 15574355
  5. Tokar EJ, Webber MM: Cholecalciferol (vitamin D3) inhibits growth and invasion by up-regulating nuclear receptors and 25-hydroxylase (CYP27A1) in human prostate cancer cells. Clin Exp Metastasis. 2005;22(3):275-84. Pubmed: 16158255
  6. Schuster I: Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011 Jan;1814(1):186-99. Epub 2010 Jul 7. Pubmed: 20619365
  7. Ohyama Y, Yamasaki T: Eight cytochrome P450s catalyze vitamin D metabolism. Front Biosci. 2004 Sep 1;9:3007-18. Pubmed: 15353333
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the conversion of 25-hydroxyvitamin D3 (25(OH)D) to 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D) plays an important role in normal bone growth, calcium metabolism, and tissue differentiation.
Gene Name:
CYP27B1
Uniprot ID:
O15528
Molecular weight:
56503.475
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular weight:
58164.815
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. Pubmed: 19934256
General function:
Involved in monooxygenase activity
Specific function:
This enzyme metabolizes arachidonic acid predominantly via a NADPH-dependent olefin epoxidation to all four regioisomeric cis-epoxyeicosatrienoic acids. One of the predominant enzymes responsible for the epoxidation of endogenous cardiac arachidonic acid pools.
Gene Name:
CYP2J2
Uniprot ID:
P51589
Molecular weight:
57610.165
References
  1. Aiba I, Yamasaki T, Shinki T, Izumi S, Yamamoto K, Yamada S, Terato H, Ide H, Ohyama Y: Characterization of rat and human CYP2J enzymes as Vitamin D 25-hydroxylases. Steroids. 2006 Oct;71(10):849-56. Epub 2006 Jul 13. Pubmed: 16842832
  2. Schuster I: Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011 Jan;1814(1):186-99. Epub 2010 Jul 7. Pubmed: 20619365
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis
Gene Name:
VDR
Uniprot ID:
P11473
Molecular weight:
48288.6
References
  1. Reinhart GA: Vitamin D analogs: novel therapeutic agents for cardiovascular disease? Curr Opin Investig Drugs. 2004 Sep;5(9):947-51. Pubmed: 15503649
  2. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. Pubmed: 11752352
  3. Fujishima T, Tsuji G, Tanaka C, Harayama H: Novel vitamin D receptor ligands having a carboxyl group as an anchor to arginine 274 in the ligand-binding domain. J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):60-2. Epub 2010 May 6. Pubmed: 20435140
General function:
Involved in monooxygenase activity
Specific function:
Has a role in maintaining calcium homeostasis. Catalyzes the NADPH-dependent 24-hydroxylation of calcidiol (25-hydroxyvitamin D(3)) and calcitriol (1-alpha,25-dihydroxyvitamin D(3)). The enzyme can perform up to 6 rounds of hydroxylation of calcitriol leading to calcitroic acid. It also shows 23-hydroxylating activity leading to 1-alpha,25-dihydroxyvitamin D(3)-26,23-lactone as end product.
Gene Name:
CYP24A1
Uniprot ID:
Q07973
Molecular weight:
58874.695
General function:
Involved in monooxygenase activity
Specific function:
Has a D-25-hydroxylase activity on both forms of vitamin D, vitamin D(2) and D(3).
Gene Name:
CYP2R1
Uniprot ID:
Q6VVX0
Molecular weight:
57358.82
References
  1. Flanagan JN, Young MV, Persons KS, Wang L, Mathieu JS, Whitlatch LW, Holick MF, Chen TC: Vitamin D metabolism in human prostate cells: implications for prostate cancer chemoprevention by vitamin D. Anticancer Res. 2006 Jul-Aug;26(4A):2567-72. Pubmed: 16886665
  2. Segura-Aguilar J: Peroxidase activity of liver microsomal vitamin D 25-hydroxylase and cytochrome P450 1A2 catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome. Biochem Mol Med. 1996 Jun;58(1):122-9. Pubmed: 8809353
  3. Schuster I: Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011 Jan;1814(1):186-99. Epub 2010 Jul 7. Pubmed: 20619365
  4. Ohyama Y, Yamasaki T: Eight cytochrome P450s catalyze vitamin D metabolism. Front Biosci. 2004 Sep 1;9:3007-18. Pubmed: 15353333
General function:
Involved in DNA binding
Specific function:
Makes part of TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone
Gene Name:
TAF4
Uniprot ID:
O00268
Molecular weight:
110113.3
General function:
Involved in chromatin binding
Specific function:
Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins
Gene Name:
NCOA6
Uniprot ID:
Q14686
Molecular weight:
219144.8