You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:03:40 UTC
HMDB IDHMDB01000
Secondary Accession NumbersNone
Metabolite Identification
Common NamedUDP
DescriptiondUDP is a derivative of nucleic acid UTP, in which the -OH (hydroxyl) group on the 2' carbon on the nucleotide's pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of UTP has been removed, most likely by hydrolysis (Wikipedia).
Structure
Thumb
Synonyms
ValueSource
2'-Deoxyuridine 5'-diphosphateChEBI
2'-Deoxyuridine 5'-diphosphoric acidGenerator
2'-Deoxyuridine-5'-diphosphateHMDB
Deoxyuridine-diphosphateHMDB
Chemical FormulaC9H14N2O11P2
Average Molecular Weight388.1618
Monoisotopic Molecular Weight388.007282324
IUPAC Name[({[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid
Traditional NamedUDP
CAS Registry Number4208-67-7
SMILES
O[C@H]1C[C@@H](O[C@@H]1COP(O)(=O)OP(O)(O)=O)N1C=CC(=O)NC1=O
InChI Identifier
InChI=1S/C9H14N2O11P2/c12-5-3-8(11-2-1-7(13)10-9(11)14)21-6(5)4-20-24(18,19)22-23(15,16)17/h1-2,5-6,8,12H,3-4H2,(H,18,19)(H,10,13,14)(H2,15,16,17)/t5-,6+,8+/m0/s1
InChI KeyInChIKey=QHWZTVCCBMIIKE-SHYZEUOFSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as pyrimidine 2'-deoxyribonucleoside diphosphates. These are pyrimidine nucleotides with a diphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPyrimidine nucleotides
Sub ClassPyrimidine deoxyribonucleotides
Direct ParentPyrimidine 2'-deoxyribonucleoside diphosphates
Alternative Parents
Substituents
  • Pyrimidine 2'-deoxyribonucleoside diphosphate
  • Organic pyrophosphate
  • Monoalkyl phosphate
  • Pyrimidone
  • Alkyl phosphate
  • Pyrimidine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • Hydropyrimidine
  • Heteroaromatic compound
  • Vinylogous amide
  • Oxolane
  • Urea
  • Secondary alcohol
  • Lactam
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Cytoplasm
  • Mitochondria
  • Nucleus
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility8.03 mg/mLALOGPS
logP-0.99ALOGPS
logP-2.1ChemAxon
logS-1.7ALOGPS
pKa (Strongest Acidic)1.77ChemAxon
pKa (Strongest Basic)-3.2ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area192.16 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity72.8 m3·mol-1ChemAxon
Polarizability29.83 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondria
  • Nucleus
Biofluid Locations
  • Blood
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Beta Ureidopropionase DeficiencySMP00172Not Available
Dihydropyrimidinase DeficiencySMP00178Not Available
MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy)SMP00202Not Available
Pyrimidine MetabolismSMP00046map00240
UMP Synthase Deiciency (Orotic Aciduria)SMP00219Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.5 +/- 0.1 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022361
KNApSAcK IDNot Available
Chemspider ID128553
KEGG Compound IDC01346
BioCyc IDDUDP
BiGG ID37403
Wikipedia LinkNot Available
NuGOwiki LinkHMDB01000
Metagene LinkHMDB01000
METLIN ID5931
PubChem Compound145729
PDB IDDUD
ChEBI ID28850
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Diaz C, Valverde L, Brenes O, Rucavado A, Gutierrez JM: Characterization of events associated with apoptosis/anoikis induced by snake venom metalloproteinase BaP1 on human endothelial cells. J Cell Biochem. 2005 Feb 15;94(3):520-8. [15543558 ]
  2. Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S: Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004 Jul;10(7):535-41. Epub 2004 Apr 20. [15100385 ]
  3. Wang J, Ohara N, Takekida S, Xu Q, Maruo T: Comparative effects of heparin-binding epidermal growth factor-like growth factor on the growth of cultured human uterine leiomyoma cells and myometrial cells. Hum Reprod. 2005 Jun;20(6):1456-65. Epub 2005 Mar 10. [15760954 ]
  4. Di Simone N, Riccardi P, Maggiano N, Piacentani A, D'Asta M, Capelli A, Caruso A: Effect of folic acid on homocysteine-induced trophoblast apoptosis. Mol Hum Reprod. 2004 Sep;10(9):665-9. Epub 2004 Jul 30. [15286211 ]
  5. Duran EH, Morshedi M, Taylor S, Oehninger S: Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002 Dec;17(12):3122-8. [12456611 ]
  6. Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Gips H, Schill WB, Kruger TF: Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004 Apr;81(4):965-72. [15066449 ]

Enzymes

General function:
Involved in thymidylate kinase activity
Specific function:
Catalyzes the conversion of dTMP to dTDP.
Gene Name:
DTYMK
Uniprot ID:
P23919
Molecular weight:
23819.105
Reactions
Adenosine triphosphate + dUMP → ADP + dUDPdetails
General function:
Involved in ATP binding
Specific function:
Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate. Does not phosphorylate deoxyribonucleosides or purine ribonucleosides. Can use ATP or GTP as a phosphate donor. Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine.
Gene Name:
UCK1
Uniprot ID:
Q9HA47
Molecular weight:
22760.43
Reactions
Deoxyuridine triphosphate + Uridine → dUDP + Uridine 5'-monophosphatedetails
Deoxyuridine triphosphate + Cytidine → dUDP + Cytidine monophosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP (By similarity).
Gene Name:
NME4
Uniprot ID:
O00746
Molecular weight:
20658.45
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination.
Gene Name:
NME1
Uniprot ID:
P15531
Molecular weight:
17148.635
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate.
Gene Name:
NME7
Uniprot ID:
Q9Y5B8
Molecular weight:
42491.365
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Negatively regulates Rho activity by interacting with AKAP13/LBC. Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (PubMed:8392752). Exhibits histidine protein kinase activity.
Gene Name:
NME2
Uniprot ID:
P22392
Molecular weight:
30136.92
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Probably has a role in normal hematopoiesis by inhibition of granulocyte differentiation and induction of apoptosis.
Gene Name:
NME3
Uniprot ID:
Q13232
Molecular weight:
19014.85
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Inhibitor of p53-induced apoptosis.
Gene Name:
NME6
Uniprot ID:
O75414
Molecular weight:
22002.965
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails
General function:
Involved in ATP binding
Specific function:
Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate. Does not phosphorylate deoxyribonucleosides or purine ribonucleosides. Can use ATP or GTP as a phosphate donor. Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine.
Gene Name:
UCK2
Uniprot ID:
Q9BZX2
Molecular weight:
29298.92
Reactions
Deoxyuridine triphosphate + Uridine → dUDP + Uridine 5'-monophosphatedetails
Deoxyuridine triphosphate + Cytidine → dUDP + Cytidine monophosphatedetails
General function:
Involved in oxidoreductase activity
Specific function:
Plays a pivotal role in cell survival by repairing damaged DNA in a p53/TP53-dependent manner. Supplies deoxyribonucleotides for DNA repair in cells arrested at G1 or G2. Contains an iron-tyrosyl free radical center required for catalysis. Forms an active ribonucleotide reductase (RNR) complex with RRM1 which is expressed both in resting and proliferating cells in response to DNA damage.
Gene Name:
RRM2B
Uniprot ID:
Q7LG56
Molecular weight:
48786.6
General function:
Involved in ATP binding
Specific function:
May contribute to UTP accumulation needed for blast transformation and proliferation.
Gene Name:
UCKL1
Uniprot ID:
Q9NWZ5
Molecular weight:
59465.77
Reactions
Deoxyuridine triphosphate + Uridine → dUDP + Uridine 5'-monophosphatedetails
Deoxyuridine triphosphate + Cytidine → dUDP + Cytidine monophosphatedetails
General function:
Not Available
Specific function:
Does not seem to have NDK kinase activity. Confers protection from cell death by Bax and alters the cellular levels of several antioxidant enzymes including Gpx5. May play a role in spermiogenesis by increasing the ability of late-stage spermatids to eliminate reactive oxygen species (By similarity).
Gene Name:
NME5
Uniprot ID:
P56597
Molecular weight:
Not Available
Reactions
Adenosine triphosphate + dUDP → ADP + Deoxyuridine triphosphatedetails