You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2014-10-29 17:13:39 UTC
HMDB IDHMDB01043
Secondary Accession NumbersNone
Metabolite Identification
Common NameArachidonic acid
DescriptionArachidonic acid is a polyunsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosa-trienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897 , 12736897 , 12700820 , 12570747 , 12432908 ).
Structure
Thumb
Synonyms
  1. (all-Z)-5,8,11,14-Eicosatetraenoate
  2. (all-Z)-5,8,11,14-Eicosatetraenoic acid
  3. 5,8,11,14-All-cis-Eicosatetraenoate
  4. 5,8,11,14-All-cis-Eicosatetraenoic acid
  5. 5,8,11,14-Eicosatetraenoate
  6. 5,8,11,14-Eicosatetraenoic acid
  7. 5-cis,8-cis,11-cis,14-cis-Eicosatetraenoate
  8. 5-cis,8-cis,11-cis,14-cis-Eicosatetraenoic acid
  9. 5Z,8Z,11Z,14Z-Eicosatetraenoate
  10. 5Z,8Z,11Z,14Z-Eicosatetraenoic acid
  11. All-cis-5,8,11,14-Eicosatetraenoate
  12. All-cis-5,8,11,14-Eicosatetraenoic acid
  13. Arachidonic acid
  14. cis-D5,8,11,14-Eicosatetraenoate
  15. cis-D5,8,11,14-Eicosatetraenoic acid
  16. Immunocytophyte
Chemical FormulaC20H32O2
Average Molecular Weight304.4669
Monoisotopic Molecular Weight304.240230268
IUPAC Name(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid
Traditional Namearachidonic acid
CAS Registry Number506-32-1
SMILES
CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O
InChI Identifier
InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22)/b7-6-,10-9-,13-12-,16-15-
InChI KeyYZXBAPSDXZZRGB-DOFZRALJSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassFatty Acids and Conjugates
Sub ClassUnsaturated Fatty Acids
Other Descriptors
  • Aliphatic Acyclic Compounds
  • Organic Compounds
  • Polyunsaturated fatty acids(KEGG)
  • Straight Chain Fatty Acids
  • Unsaturated fatty acids(KEGG)
  • Unsaturated fatty acids(Lipidmaps)
  • eicosa-5,8,11,14-tetraenoic acid(ChEBI)
  • eicosanoid(ChEBI)
  • omega-6 fatty acid(ChEBI)
  • very long-chain fatty acid(ChEBI)
Substituents
  • Acyclic Alkene
  • Carboxylic Acid
Direct ParentUnsaturated Fatty Acids
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Component of Prostaglandin and leukotriene metabolism
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP6.98SANGSTER (1993)
Predicted Properties
PropertyValueSource
Water Solubility1.510E-04 g/LALOGPS
logP6.8ALOGPS
logP6.59ChemAxon
logS-6.3ALOGPS
pKa (Strongest Acidic)4.82ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3ChemAxon
Rotatable Bond Count14ChemAxon
Refractivity99.95ChemAxon
Polarizability37.2ChemAxon
Spectra
SpectraGC-MSLC-MS
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Biofluid Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Saliva
  • Urine
Tissue Location
  • Adipose Tissue
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Lung
  • Muscle
  • Myelin
  • Nerve Cells
  • Nervous Tissues
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Spleen
  • Testes
  • Thyroid Gland
Pathways
NameSMPDB LinkKEGG Link
Alpha Linolenic Acid and Linoleic Acid MetabolismSMP00018map00592
Arachidonic Acid MetabolismSMP00075map00590
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified2.94 +/- 0.058 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified14 +/- 12 uMAdult (>18 years old)Not SpecifiedNormal details
BloodDetected and Quantified31.6 +/- 21.7 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified31.5 +/- 25.8 uMAdult (>18 years old)MaleNormal details
BloodDetected and Quantified31.7 +/- 30.4 uMAdult (>18 years old)FemaleNormal details
BloodDetected and Quantified5.263 +/- 2.072 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified8.50 +/- 1.58 uMAdult (>18 years old)FemaleNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.35 (0.03 - 0.66) uMAdult (>18 years old)Not SpecifiedNormal details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Male
Normal
details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Not SpecifiedNormal details
UrineDetected and Quantified2.45 +/- 1.63 umol/mmol creatinineAdult (>18 years old)FemaleNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified34.3 +/- 27.8 uMAdult (>18 years old)BothHypertension details
BloodDetected and Quantified34.0 +/- 28.6 uMAdult (>18 years old)MaleEssential hypertension details
BloodDetected and Quantified34.9 +/- 26.4 uMAdult (>18 years old)FemaleEssential hypertension details
BloodDetected and Quantified10.27 +/- 2.11 uMAdult (>18 years old)FemaleGestational diabetes mellitus (GDM) details
Associated Disorders and Diseases
Disease References
Essential hypertension
  1. Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X: Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res. 2008 Apr;31(4):623-32. Pubmed: 18633173
Gestational diabetes
  1. Min Y, Ghebremeskel K, Lowy C, Thomas B, Crawford MA: Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia. 2004 Jan;47(1):75-81. Epub 2003 Nov 22. Pubmed: 14634727
Hypertension
  1. Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X: Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res. 2008 Apr;31(4):623-32. Pubmed: 18633173
Associated OMIM IDs
DrugBank IDDB04557
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB011872
KNApSAcK IDC00000388
Chemspider ID392692
KEGG Compound IDC00219
BioCyc IDARACHIDONIC_ACID
BiGG ID1586189
Wikipedia LinkArachidonic acid
NuGOwiki LinkHMDB01043
Metagene LinkHMDB01043
METLIN ID193
PubChem Compound444899
PDB IDACD
ChEBI ID15843
References
Synthesis ReferenceDai, Chuanchao; Yuan, Zhilin; Wang, Anqi. Production of arachidonic acid and eicosapentaenoic acid with organic wastewater of soybean products. Zhongguo Youzhi (2004), 29(5), 31-33.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  2. Markuszewski L, Rosiak M, Golanski J, Rysz J, Spychalska M, Watala C: Reduced blood platelet sensitivity to aspirin in coronary artery disease: are dyslipidaemia and inflammatory states possible factors predisposing to sub-optimal platelet response to aspirin? Basic Clin Pharmacol Toxicol. 2006 May;98(5):503-9. Pubmed: 16635110
  3. Frelinger AL 3rd, Furman MI, Linden MD, Li Y, Fox ML, Barnard MR, Michelson AD: Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation. 2006 Jun 27;113(25):2888-96. Epub 2006 Jun 19. Pubmed: 16785341
  4. Daskalou T, Karamouzis M, Liaros G: [Metabolites of arachidonic acid in activating platelets and their estimation by radionuclide techniques] Hell J Nucl Med. 2006 Jan-Apr;9(1):49-52. Pubmed: 16617398
  5. Sacerdoti D, Gatta A, McGiff JC: Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat. 2003 Oct;72(1-2):51-71. Pubmed: 14626496
  6. Claria J, Arroyo V: Prostaglandins and other cyclooxygenase-dependent arachidonic acid metabolites and the kidney in liver disease. Prostaglandins Other Lipid Mediat. 2003 Oct;72(1-2):19-33. Pubmed: 14626494
  7. Pantaleo P, Marra F, Vizzutti F, Spadoni S, Ciabattoni G, Galli C, La Villa G, Gentilini P, Laffi G: Effects of dietary supplementation with arachidonic acid on platelet and renal function in patients with cirrhosis. Clin Sci (Lond). 2004 Jan;106(1):27-34. Pubmed: 12877651
  8. Hughes-Fulford M, Tjandrawinata RR, Li CF, Sayyah S: Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells. Carcinogenesis. 2005 Sep;26(9):1520-6. Epub 2005 May 5. Pubmed: 15878913
  9. Kudolo GB, Wang W, Barrientos J, Elrod R, Blodgett J: The ingestion of Ginkgo biloba extract (EGb 761) inhibits arachidonic acid-mediated platelet aggregation and thromboxane B2 production in healthy volunteers. J Herb Pharmacother. 2004;4(4):13-26. Pubmed: 15927922
  10. Burke J, Kraft WK, Greenberg HE, Gleave M, Pitari GM, VanBuren S, Wagner JA, Waldman SA: Relationship of arachidonic acid concentration to cyclooxygenase-dependent human platelet aggregation. J Clin Pharmacol. 2003 Sep;43(9):983-9. Pubmed: 12971030
  11. Carroll RC, Craft RM, Chavez JJ, Snider CC, Bresee SJ, Cohen E: A Thrombelastograph whole blood assay for clinical monitoring of NSAID-insensitive transcellular platelet activation by arachidonic acid. J Lab Clin Med. 2005 Jul;146(1):30-5. Pubmed: 16025089
  12. Cuisset T, Frere C, Quilici J, Barbou F, Morange PE, Hovasse T, Bonnet JL, Alessi MC: High post-treatment platelet reactivity identified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stenting for acute coronary syndrome. J Thromb Haemost. 2006 Mar;4(3):542-9. Epub 2005 Dec 22. Pubmed: 16371119
  13. Arruzazabala ML, Mas R, Molina V, Carbajal D, Fernandez L, Illnait J, Castano G, Fernandez J, Mendoza S: Effects of d-003, a new substance purified from sugar cane wax, on platelet aggregation and plasma levels of arachidonic acid metabolites in healthy volunteers. Int J Clin Pharmacol Res. 2004;24(2-3):55-63. Pubmed: 15689052
  14. Sinzinger H: Metabolites of arachidonic acid in activating platelets and their estimation by radionuclide techniques. Hell J Nucl Med. 2006 May-Aug;9(2):111; author reply 111-2. Pubmed: 16894418
  15. Bringmann A, Schopf S, Faude F, Reichenbach A: Arachidonic acid-induced inhibition of Ca2+ channel currents in retinal glial (Muller) cells. Graefes Arch Clin Exp Ophthalmol. 2001 Nov;239(11):859-64. Pubmed: 11789867
  16. Eikelboom JW, Hankey GJ, Thom J, Claxton A, Yi Q, Gilmore G, Staton J, Barden A, Norman PE: Enhanced antiplatelet effect of clopidogrel in patients whose platelets are least inhibited by aspirin: a randomized crossover trial. J Thromb Haemost. 2005 Dec;3(12):2649-55. Pubmed: 16359503
  17. Cox D, Maree AO, Dooley M, Conroy R, Byrne MF, Fitzgerald DJ: Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers. Stroke. 2006 Aug;37(8):2153-8. Epub 2006 Jun 22. Pubmed: 16794200
  18. Yamada N, Miyamoto M, Isogaya M, Suzuki M, Ikezawa S, Ohno M, Otake A, Umemura K: TRA-418, a novel compound having both thromboxane A(2) receptor antagonistic and prostaglandin I(2) receptor agonistic activities: its antiplatelet effects in human and animal platelets. J Thromb Haemost. 2003 Aug;1(8):1813-9. Pubmed: 12911598
  19. Payne DA, Jones CI, Hayes PD, Webster SE, Ross Naylor A, Goodall AH: Platelet inhibition by aspirin is diminished in patients during carotid surgery: a form of transient aspirin resistance? Thromb Haemost. 2004 Jul;92(1):89-96. Pubmed: 15213849
  20. Kroetz DL, Xu F: Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol. 2005;45:413-38. Pubmed: 15822183
  21. Pompeia C, Lima T, Curi R: Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death? Cell Biochem Funct. 2003 Jun;21(2):97-104. Pubmed: 12736897
  22. Calder PC: Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz J Med Biol Res. 2003 Apr;36(4):433-46. Epub 2003 Apr 8. Pubmed: 12700820
  23. Zhao X, Imig JD: Kidney CYP450 enzymes: biological actions beyond drug metabolism. Curr Drug Metab. 2003 Feb;4(1):73-84. Pubmed: 12570747
  24. Kudo I, Murakami M: Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:3-58. Pubmed: 12432908

Only showing the first 50 proteins. There are 115 proteins in total.

Enzymes

General function:
Involved in transferase activity
Specific function:
Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities and an acyl carrier protein.
Gene Name:
FASN
Uniprot ID:
P49327
Molecular weight:
273424.06
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle.
Gene Name:
PLA2G5
Uniprot ID:
P39877
Molecular weight:
15674.065
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference.
Gene Name:
PLA2G2F
Uniprot ID:
Q9BZM2
Molecular weight:
23256.29
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G1B
Uniprot ID:
P04054
Molecular weight:
16359.535
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in phospholipase A2 activity
Specific function:
Not known; does not seem to have catalytic activity.
Gene Name:
PLA2G12B
Uniprot ID:
Q9BX93
Molecular weight:
Not Available
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine.
Gene Name:
PLA2G10
Uniprot ID:
O15496
Molecular weight:
18153.04
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in sugar binding
Specific function:
Has lysophospholipase activity.
Gene Name:
LGALS13
Uniprot ID:
Q9UHV8
Molecular weight:
16118.44
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a preference for arachidonic-containing phospholipids.
Gene Name:
PLA2G2E
Uniprot ID:
Q9NZK7
Molecular weight:
15988.525
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Does not exhibit detectable activity toward sn-2-arachidonoyl- or linoleoyl-phosphatidylcholine or -phosphatidylethanolamine.
Gene Name:
PLA2G12A
Uniprot ID:
Q9BZM1
Molecular weight:
21066.99
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in metabolic process
Specific function:
Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide-induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose-stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2-induced chemotaxis through regulation of F-actin polymerization at the pseudopods. Isoform ankyrin-iPLA2-1 and isoform ankyrin-iPLA2-2, which lack the catalytic domain, are probably involved in the negative regulation of iPLA2 activity.
Gene Name:
PLA2G6
Uniprot ID:
O60733
Molecular weight:
84092.635
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in sugar binding
Specific function:
May have both lysophospholipase and carbohydrate-binding activities.
Gene Name:
CLC
Uniprot ID:
Q05315
Molecular weight:
16452.785
General function:
Involved in phospholipase A2 activity
Specific function:
Thought to participate in the regulation of the phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G2A
Uniprot ID:
P14555
Molecular weight:
16082.525
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined.
Gene Name:
PLA2G2D
Uniprot ID:
Q9UNK4
Molecular weight:
16546.1
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
PNLIP
Uniprot ID:
P16233
Molecular weight:
51156.48
General function:
Involved in catalytic activity
Specific function:
Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin.
Gene Name:
LIPC
Uniprot ID:
P11150
Molecular weight:
55914.1
General function:
Involved in catalytic activity
Specific function:
May function as inhibitor of dietary triglyceride digestion. Lacks detectable lipase activity towards triglycerides, diglycerides, phosphatidylcholine, galactolipids or cholesterol esters (in vitro) (By similarity).
Gene Name:
PNLIPRP1
Uniprot ID:
P54315
Molecular weight:
Not Available
General function:
Involved in metabolic process
Specific function:
Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities.
Gene Name:
PNPLA3
Uniprot ID:
Q9NST1
Molecular weight:
52864.64
General function:
Involved in lipid metabolic process
Specific function:
Not Available
Gene Name:
LIPF
Uniprot ID:
P07098
Molecular weight:
45237.375
General function:
Involved in catalytic activity
Specific function:
Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin.
Gene Name:
LIPG
Uniprot ID:
Q9Y5X9
Molecular weight:
56794.275
General function:
Lipid transport and metabolism
Specific function:
Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.
Gene Name:
CEL
Uniprot ID:
P19835
Molecular weight:
79666.385
General function:
Involved in catalytic activity
Specific function:
Lipase with broad substrate specificity. Can hydrolyze both phospholipids and galactolipids. Acts preferentially on monoglycerides, phospholipids and galactolipids. Contributes to milk fat hydrolysis.
Gene Name:
PNLIPRP2
Uniprot ID:
P54317
Molecular weight:
52077.475
General function:
Involved in catalytic activity
Specific function:
The primary function of this lipase is the hydrolysis of triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium (By similarity).
Gene Name:
LPL
Uniprot ID:
P06858
Molecular weight:
53162.07
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).
Gene Name:
CYP4A11
Uniprot ID:
Q02928
Molecular weight:
59347.31
Reactions
Arachidonic acid + Oxygen + NADPH + Hydrogen Ion → 20-Hydroxyeicosatetraenoic acid + NADP + Waterdetails
Arachidonic acid + Oxygen + NADPH + Hydrogen Ion → 11,12-EpETrE + NADP + Waterdetails
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular weight:
62520.62
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine.
Gene Name:
CES2
Uniprot ID:
O00748
Molecular weight:
68898.39
General function:
Involved in carboxylesterase activity
Specific function:
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.
Gene Name:
BCHE
Uniprot ID:
P06276
Molecular weight:
68417.575
General function:
Involved in metabolic process
Specific function:
Has a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid.
Gene Name:
PLA2G4C
Uniprot ID:
Q9UP65
Molecular weight:
60938.07
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in hydrolase activity
Specific function:
In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production.
Gene Name:
LIPE
Uniprot ID:
Q05469
Molecular weight:
116596.715
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Shows an 11-fold preference for phosphatidylglycerol over phosphatidylcholine (PC). Preferential cleavage: 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine (PE) > 1-palmitoyl-2-linoleoyl-PC > 1-palmitoyl-2-arachidonoyl-PC > 1-palmitoyl-2-arachidonoyl-PE. Plays a role in ciliogenesis.
Gene Name:
PLA2G3
Uniprot ID:
Q9NZ20
Molecular weight:
57166.51
Reactions
Phosphatidylcholine + Water → 1-Acyl-sn-glycero-3-phosphocholine + Arachidonic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
General function:
Involved in acylphosphatase activity
Specific function:
Its physiological role is not yet clear.
Gene Name:
ACYP2
Uniprot ID:
P14621
Molecular weight:
11139.52
General function:
Involved in acylphosphatase activity
Specific function:
Its physiological role is not yet clear.
Gene Name:
ACYP1
Uniprot ID:
P07311
Molecular weight:
11260.84
General function:
Involved in metallopeptidase activity
Specific function:
Involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate).
Gene Name:
ACY1
Uniprot ID:
Q03154
Molecular weight:
45884.705
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Catalyzes the deacetylation of N-acetylaspartic acid (NAA) to produce acetate and L-aspartate. NAA occurs in high concentration in brain and its hydrolysis NAA plays a significant part in the maintenance of intact white matter. In other tissues it act as a scavenger of NAA from body fluids.
Gene Name:
ASPA
Uniprot ID:
P45381
Molecular weight:
35734.79
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Plays an important role in deacetylating mercapturic acids in kidney proximal tubules (By similarity).
Gene Name:
ACY3
Uniprot ID:
Q96HD9
Molecular weight:
Not Available
General function:
Involved in metal ion binding
Specific function:
Catalyzes the first step in leukotriene biosynthesis, and thereby plays a role in inflammatory processes.
Gene Name:
ALOX5
Uniprot ID:
P09917
Molecular weight:
77982.595
Reactions
Arachidonic acid + Oxygen → leukotriene A(4) + Waterdetails
Arachidonic acid + Oxygen → 5(S)-Hydroperoxyeicosatetraenoic aciddetails
Arachidonic acid + Oxygen → Leukotriene A4 + Waterdetails
General function:
Involved in metal ion binding
Specific function:
Converts arachidonic acid exclusively to 15S-hydroperoxyeicosatetraenoic acid, while linoleic acid is less well metabolized.
Gene Name:
ALOX15B
Uniprot ID:
O15296
Molecular weight:
72522.25
Reactions
Arachidonic acid + Oxygen → 15(S)-HPETEdetails
Arachidonic acid + Oxygen → 8(S)-HPETEdetails
General function:
Involved in metal ion binding
Specific function:
Oxygenase and 14,15-leukotriene A4 synthase activity.
Gene Name:
ALOX12
Uniprot ID:
P18054
Molecular weight:
75693.38
Reactions
Arachidonic acid + Oxygen → 12(S)-HPETEdetails
General function:
Involved in peroxidase activity
Specific function:
Mediates the formation of prostaglandins from arachidonate. May have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity.
Gene Name:
PTGS2
Uniprot ID:
P35354
Molecular weight:
68995.625
Reactions
Arachidonic acid + AH(2) + Oxygen → prostaglandin H(2) + A + Waterdetails
Arachidonic acid + Oxygen → Prostaglandin G2details
General function:
Involved in peroxidase activity
Specific function:
May play an important role in regulating or promoting cell proliferation in some normal and neoplastically transformed cells.
Gene Name:
PTGS1
Uniprot ID:
P23219
Molecular weight:
68685.82
Reactions
Arachidonic acid + AH(2) + Oxygen → prostaglandin H(2) + A + Waterdetails
Arachidonic acid + Oxygen → Prostaglandin G2details
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. Pubmed: 17139284
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. Pubmed: 17016423
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. Pubmed: 10592235
General function:
Involved in metal ion binding
Specific function:
Converts arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid. Also acts on C-12 of arachidonate as well as on linoleic acid.
Gene Name:
ALOX15
Uniprot ID:
P16050
Molecular weight:
74803.795
Reactions
Arachidonic acid + Oxygen → 15(S)-HPETEdetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP4F2
Uniprot ID:
P78329
Molecular weight:
59852.825
Reactions
Arachidonic acid + Oxygen + NADPH + Hydrogen Ion → 20-Hydroxyeicosatetraenoic acid + NADP + Waterdetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. This enzyme requires molecular oxygen and NADPH for the omega-hydroxylation of LTB4, a potent chemoattractant for polymorphonuclear leukocytes.
Gene Name:
CYP4F3
Uniprot ID:
Q08477
Molecular weight:
59846.085
Reactions
Arachidonic acid + Oxygen + NADPH + Hydrogen Ion → 20-Hydroxyeicosatetraenoic acid + NADP + Waterdetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Mo SL, Zhou ZW, Yang LP, Wei MQ, Zhou SF: New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126. Pubmed: 20167001
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May play an important physiological function in brain. May play a regulatory role by modulating the cellular levels of fatty acyl-CoA ligands for certain transcription factors as well as the substrates for fatty acid metabolizing enzymes, contributing to lipid homeostasis. Has broad specificity, active towards fatty acyl-CoAs with chain-lengths of C8-C18. Has a maximal activity toward palmitoyl-CoA.
Gene Name:
ACOT7
Uniprot ID:
O00154
Molecular weight:
40454.945
Reactions
Arachidonyl-CoA + Water → Coenzyme A + Arachidonic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Displays high levels of activity on medium- and long chain acyl CoAs.
Gene Name:
ACOT2
Uniprot ID:
P49753
Molecular weight:
53218.02
Reactions
Arachidonyl-CoA + Water → Coenzyme A + Arachidonic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity). Succinyl-CoA thioesterase that also hydrolyzes long chain saturated and unsaturated monocarboxylic acyl-CoAs.
Gene Name:
ACOT4
Uniprot ID:
Q8N9L9
Molecular weight:
46326.09
Reactions
Arachidonyl-CoA + Water → Coenzyme A + Arachidonic aciddetails

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5
General function:
Not Available
Specific function:
May mediate the release of newly synthesized prostaglandins from cells, the transepithelial transport of prostaglandins, and the clearance of prostaglandins from the circulation. Transports PGD2, as well as PGE1, PGE2 and PGF2A
Gene Name:
SLCO2A1
Uniprot ID:
Q92959
Molecular weight:
70117.0
References
  1. Kanai N, Lu R, Satriano JA, Bao Y, Wolkoff AW, Schuster VL: Identification and characterization of a prostaglandin transporter. Science. 1995 May 12;268(5212):866-9. Pubmed: 7754369

Only showing the first 50 proteins. There are 115 proteins in total.