You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:03:49 UTC
HMDB IDHMDB01072
Secondary Accession NumbersNone
Metabolite Identification
Common NameCoenzyme Q10
DescriptionCoenzyme Q10 (ubiquinone) is a naturally occurring compound widely distributed in animal organisms and in humans. The primary compounds involved in the biosynthesis of ubiquinone are 4-hydroxybenzoate and the polyprenyl chain. An essential role of coenzyme Q10 is as an electron carrier in the mitochondrial respiratory chain. Moreover, coenzyme Q10 is one of the most important lipophilic antioxidants, preventing the generation of free radicals as well as oxidative modifications of proteins, lipids, and DNA, it and can also regenerate the other powerful lipophilic antioxidant, alpha-tocopherol. Antioxidant action is a property of the reduced form of coenzyme Q10, ubiquinol (CoQ10H2), and the ubisemiquinone radical (CoQ10H*). Paradoxically, independently of the known antioxidant properties of coenzyme Q10, the ubisemiquinone radical anion (CoQ10-) possesses prooxidative properties. Decreased levels of coenzyme Q10 in humans are observed in many pathologies (e.g. cardiac disorders, neurodegenerative diseases, AIDS, cancer) associated with intensive generation of free radicals and their action on cells and tissues. In these cases, treatment involves pharmaceutical supplementation or increased consumption of coenzyme Q10 with meals as well as treatment with suitable chemical compounds (i.e. folic acid or B-group vitamins) which significantly increase ubiquinone biosynthesis in the organism. Estimation of coenzyme Q10 deficiency and efficiency of its supplementation requires a determination of ubiquinone levels in the organism. Therefore, highly selective and sensitive methods must be applied, such as HPLC with UV or coulometric detection. For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. (PMID: 15928598 , 17914161 ).
Structure
Thumb
Synonyms
ValueSource
2-((all-e)-3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6-dimethoxy-3-methyl-P-benzoquinoneChEBI
2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methyl-1,4-benzoquinoneChEBI
AdelirChEBI
all-trans-UbiquinoneChEBI
CoQChEBI
CoQ10ChEBI
QChEBI
Q 199ChEBI
Q10ChEBI
UbidecarenoneChEBI
UbiquinoneChEBI
Ubiquinone 10ChEBI
Ubiquinone 50ChEBI
UBIQUINONE-10ChEBI
(all-e)-2,3-Dimethoxy-5-methyl-6-(3,7,11,15,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaenyl)-2,5-cyclohexadiene-1,4-dioneHMDB
(all-e)-2-(3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6-dimethoxy-3-methyl-2,5-cyclohexadiene-1,4-dioneHMDB
2-(3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6-dimethoxy-3-methyl-P-benzoquinoneHMDB
2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl]-5,6-dimethoxy-3-methyl- 2,5-cyclohexadiene-1,4-dioneHMDB
4-Ethyl-5-fluoropyrimidineHMDB
Aqua Q 10l10HMDB
Aqua Q10HMDB
bio-QuinonHMDB
bio-Quinone Q10HMDB
EnsorbHMDB
Kaneka Q10HMDB
KudesanHMDB
Li-Q-sorbHMDB
Liquid-QHMDB
NeuquinonHMDB
NeuquinoneHMDB
PureSorb Q 40HMDB
Q 10AAHMDB
Q-GelHMDB
Q-Gel 100HMDB
Ubiquinone Q10HMDB
UnbiquinoneHMDB
Unispheres Q 10HMDB
Chemical FormulaC59H90O4
Average Molecular Weight863.3435
Monoisotopic Molecular Weight862.683911368
IUPAC Name2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione
Traditional Namecoenzyme-Q10
CAS Registry Number303-98-0
SMILES
COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O
InChI Identifier
InChI=1S/C59H90O4/c1-44(2)24-15-25-45(3)26-16-27-46(4)28-17-29-47(5)30-18-31-48(6)32-19-33-49(7)34-20-35-50(8)36-21-37-51(9)38-22-39-52(10)40-23-41-53(11)42-43-55-54(12)56(60)58(62-13)59(63-14)57(55)61/h24,26,28,30,32,34,36,38,40,42H,15-23,25,27,29,31,33,35,37,39,41,43H2,1-14H3/b45-26+,46-28+,47-30+,48-32+,49-34+,50-36+,51-38+,52-40+,53-42+
InChI KeyInChIKey=ACTIUHUUMQJHFO-UPTCCGCDSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as ubiquinones. These are coenzyme Q derivatives containing a 5, 6-dimethoxy-3-methyl(1,4-benzoquinone) moiety to which an isoprenyl group is attached at ring position 2(or 6).
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassQuinone and hydroquinone lipids
Direct ParentUbiquinones
Alternative Parents
Substituents
  • Polyterpenoid
  • Polyprenylbenzoquinone
  • Ubiquinone skeleton
  • Quinone
  • P-benzoquinone
  • Vinylogous ester
  • Cyclic ketone
  • Ketone
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Anti-oxidant
  • Cell signaling
  • Electron donor
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Mitochondria
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.000193 mg/mLALOGPS
logP9.94ALOGPS
logP17.16ChemAxon
logS-6.7ALOGPS
pKa (Strongest Basic)-4.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area52.6 Å2ChemAxon
Rotatable Bond Count31ChemAxon
Refractivity286.61 m3·mol-1ChemAxon
Polarizability112.38 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03dj-0211112090-13e67655f61e48a95d91View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-00kb-0859598220-67d1d2437197bf4977c9View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-014j-1132229710-87eed3c798b1c43399ecView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0000000090-68b5c91d1736a6033778View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-08fs-0100000390-3f2c6d6cc684a14c6586View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-000b-8100000890-af49da707a25798624aeView in MoNA
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Mitochondria
Biofluid Locations
  • Blood
Tissue Location
  • Brain
  • Kidney
  • Liver
  • Lymphocyte
  • Muscle
  • Skeletal Muscle
Pathways
NameSMPDB LinkKEGG Link
2-ketoglutarate dehydrogenase complex deficiencySMP00549Not Available
Citric Acid CycleSMP00057map00020
Congenital lactic acidosisSMP00546Not Available
Fumarase deficiencySMP00547Not Available
Glutaminolysis and CancerSMP02298Not Available
Mitochondrial complex II deficiencySMP00548Not Available
Mitochondrial Electron Transport ChainSMP00355map00190
Pyruvate dehydrogenase deficiency (E2)SMP00551Not Available
Pyruvate dehydrogenase deficiency (E3)SMP00550Not Available
The oncogenic action of 2-hydroxyglutarateSMP02291Not Available
The oncogenic action of D-2-hydroxyglutarate in Hydroxygluaricaciduria SMP02359Not Available
The oncogenic action of FumarateSMP02295Not Available
The oncogenic action of L-2-hydroxyglutarate in HydroxygluaricaciduriaSMP02358Not Available
The oncogenic action of SuccinateSMP02292Not Available
Warburg EffectSMP00654Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified1.17 +/- 0.12 uMAdult (>18 years old)MaleNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified0.65 +/- 0.18 uMAdult (>18 years old)FemaleNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified0.85 (0.46-1.33) uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified0.040 +/- 0.014 uMAdult (>18 years old)MaleNormal details
BloodDetected and Quantified0.056 +/- 0.023 uMAdult (>18 years old)MaleNormal details
BloodDetected and Quantified4.31 +/- 0.42 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB014621
KNApSAcK IDNot Available
Chemspider ID4445197
KEGG Compound IDC11378
BioCyc IDUBIQUINONE-10
BiGG ID34867
Wikipedia Linkcoenzyme Q10
NuGOwiki LinkHMDB01072
Metagene LinkHMDB01072
METLIN ID5983
PubChem Compound5281915
PDB IDU10
ChEBI ID46245
References
Synthesis ReferenceSeo, Myung-Ji; Im, Eun-Mi; Hur, Jin-Haeng; Nam, Jung-Yeon; Hyun, Chang-Gu; Pyun, Yu-Ryang; Kim, Soon-Ok. Production of coenzyme Q10 by recombinant E. coli harboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti. Journal of Microbiology and Biotechnology (2006), 16(6), 933-938.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Siciliano G, Mancuso M, Tedeschi D, Manca ML, Renna MR, Lombardi V, Rocchi A, Martelli F, Murri L: Coenzyme Q10, exercise lactate and CTG trinucleotide expansion in myotonic dystrophy. Brain Res Bull. 2001 Oct-Nov 1;56(3-4):405-10. [11719279 ]
  2. Appelkvist EL, Edlund C, Low P, Schedin S, Kalen A, Dallner G: Effects of inhibitors of hydroxymethylglutaryl coenzyme A reductase on coenzyme Q and dolichol biosynthesis. Clin Investig. 1993;71(8 Suppl):S97-102. [8241713 ]
  3. Lalani SR, Vladutiu GD, Plunkett K, Lotze TE, Adesina AM, Scaglia F: Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Arch Neurol. 2005 Feb;62(2):317-20. [15710863 ]
  4. Mosca L, Marcellini S, Perluigi M, Mastroiacovo P, Moretti S, Famularo G, Peluso I, Santini G, De Simone C: Modulation of apoptosis and improved redox metabolism with the use of a new antioxidant formula. Biochem Pharmacol. 2002 Apr 1;63(7):1305-14. [11960607 ]
  5. Zierz S, von Wersebe O, Bleistein J, Jerusalem F: Exogenous coenzyme Q (coq) fails to increase coq in skeletal muscle of two patients with mitochondrial myopathies. J Neurol Sci. 1990 Mar;95(3):283-90. [2358821 ]
  6. Sekine K, Ota N, Nishii M, Uetake T, Shimadzu M: Estimation of plasma and saliva levels of coenzyme Q10 and influence of oral supplementation. Biofactors. 2005;25(1-4):205-11. [16873948 ]
  7. Zhou S, Zhang Y, Davie A, Marshall-Gradisnik S, Hu H, Wang J, Brushett D: Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness. 2005 Sep;45(3):337-46. [16230985 ]
  8. Folkers K, Hanioka T, Xia LJ, McRee JT Jr, Langsjoen P: Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the AIDS related complex. Biochem Biophys Res Commun. 1991 Apr 30;176(2):786-91. [1673841 ]
  9. Mancini A, De Marinis L, Oradei A, Hallgass ME, Conte G, Pozza D, Littarru GP: Coenzyme Q10 concentrations in normal and pathological human seminal fluid. J Androl. 1994 Nov-Dec;15(6):591-4. [7721661 ]
  10. Hanisch F, Zierz S: Only transient increase of serum CoQ subset 10 during long-term CoQ10 therapy in mitochondrial ophthalmoplegia. Eur J Med Res. 2003 Nov 12;8(11):485-91. [14644702 ]
  11. Ogasahara S, Engel AG, Frens D, Mack D: Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2379-82. [2928337 ]
  12. Ye CQ, Folkers K, Tamagawa H, Pfeiffer C: A modified determination of coenzyme Q10 in human blood and CoQ10 blood levels in diverse patients with allergies. Biofactors. 1988 Dec;1(4):303-6. [3255359 ]
  13. Singh RB, Niaz MA, Rastogi SS, Shukla PK, Thakur AS: Effect of hydrosoluble coenzyme Q10 on blood pressures and insulin resistance in hypertensive patients with coronary artery disease. J Hum Hypertens. 1999 Mar;13(3):203-8. [10204818 ]
  14. Van Maldergem L, Trijbels F, DiMauro S, Sindelar PJ, Musumeci O, Janssen A, Delberghe X, Martin JJ, Gillerot Y: Coenzyme Q-responsive Leigh's encephalopathy in two sisters. Ann Neurol. 2002 Dec;52(6):750-4. [12447928 ]
  15. Tomasetti M, Alleva R, Solenghi MD, Littarru GP: Distribution of antioxidants among blood components and lipoproteins: significance of lipids/CoQ10 ratio as a possible marker of increased risk for atherosclerosis. Biofactors. 1999;9(2-4):231-40. [10416035 ]
  16. Ogasahara S, Yorifuji S, Nishikawa Y, Takahashi M, Wada K, Hazama T, Nakamura Y, Hashimoto S, Kono N, Tarui S: Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology. 1985 Mar;35(3):372-7. [3974895 ]
  17. Mancini A, Conte B, De Marinis L, Hallgass ME, Pozza D, Oradei A, Littarru GP: Coenzyme Q10 levels in human seminal fluid: diagnostic and clinical implications. Mol Aspects Med. 1994;15 Suppl:s249-55. [7752837 ]
  18. Zierz S, Jahns G, Jerusalem F: Coenzyme Q in serum and muscle of 5 patients with Kearns-Sayre syndrome and 12 patients with ophthalmoplegia plus. J Neurol. 1989 Feb;236(2):97-101. [2709060 ]
  19. Miyake Y, Shouzu A, Nishikawa M, Yonemoto T, Shimizu H, Omoto S, Hayakawa T, Inada M: Effect of treatment with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on serum coenzyme Q10 in diabetic patients. Arzneimittelforschung. 1999 Apr;49(4):324-9. [10337451 ]
  20. De Luca C, Filosa A, Grandinetti M, Maggio F, Lamba M, Passi S: Blood antioxidant status and urinary levels of catecholamine metabolites in beta-thalassemia. Free Radic Res. 1999 Jun;30(6):453-62. [10400457 ]
  21. Siemieniuk E, Skrzydlewska E: [Coenzyme Q10: its biosynthesis and biological significance in animal organisms and in humans]. Postepy Hig Med Dosw (Online). 2005;59:150-9. [15928598 ]
  22. Littarru GP, Tiano L: Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007 Sep;37(1):31-7. [17914161 ]

Enzymes

General function:
Involved in oxidation reduction
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND1
Uniprot ID:
P03886
Molecular weight:
35660.055
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS2
Uniprot ID:
O75306
Molecular weight:
51851.59
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND4L
Uniprot ID:
P03901
Molecular weight:
10741.005
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND5
Uniprot ID:
P03915
Molecular weight:
67025.67
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS3
Uniprot ID:
O75489
Molecular weight:
30241.245
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in oxidoreductase activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFV2
Uniprot ID:
P19404
Molecular weight:
27391.36
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in electron carrier activity
Specific function:
Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor.
Gene Name:
SDHA
Uniprot ID:
P31040
Molecular weight:
72690.975
Reactions
Succinic acid + Coenzyme Q10 → Fumaric acid + QH(2)details
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone.
Gene Name:
NDUFS8
Uniprot ID:
O00217
Molecular weight:
23704.795
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND2
Uniprot ID:
P03891
Molecular weight:
38960.47
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
Gene Name:
NDUFS1
Uniprot ID:
P28331
Molecular weight:
67523.595
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in electron-transferring-flavoprotein dehydrogenase activity
Specific function:
Accepts electrons from ETF and reduces ubiquinone.
Gene Name:
ETFDH
Uniprot ID:
Q16134
Molecular weight:
68494.96
Reactions
Reduced electron-transferring flavoprotein + Coenzyme Q10 → electron-transferring flavoprotein + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND4
Uniprot ID:
P03905
Molecular weight:
51580.26
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS7
Uniprot ID:
O75251
Molecular weight:
23563.3
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND3
Uniprot ID:
P03897
Molecular weight:
13185.87
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFV1
Uniprot ID:
P49821
Molecular weight:
49867.66
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND6
Uniprot ID:
P03923
Molecular weight:
18622.045
Reactions
NADH + Coenzyme Q10 → NAD + QH(2)details
General function:
Involved in electron carrier activity
Specific function:
Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHB
Uniprot ID:
P21912
Molecular weight:
31629.365
Reactions
Succinic acid + Coenzyme Q10 → Fumaric acid + QH(2)details