You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:04:10 UTC
HMDB IDHMDB01274
Secondary Accession NumbersNone
Metabolite Identification
Common NamedTDP
DescriptionIs an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 )
Structure
Thumb
Synonyms
ValueSource
2'-Deoxyribosylthymine 5'-(trihydrogen diphosphate)ChEBI
Deoxy-TDPChEBI
Deoxythymidine 5'-diphosphateChEBI
Thymidine 5'-diphosphateChEBI
Thymidine 5'-pyrophosphateChEBI
THYMIDINE-5'- diphosphATEChEBI
2'-Deoxyribosylthymine 5'-(trihydrogen diphosphoric acid)Generator
TDPHMDB
Chemical FormulaC10H16N2O11P2
Average Molecular Weight402.1884
Monoisotopic Molecular Weight402.022932388
IUPAC Name{[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy})phosphoryl]oxy}phosphonic acid
Traditional NamedTDP
CAS Registry Number491-97-4
SMILES
CC1=CN([C@H]2C[C@H](O)[C@@H](COP(O)(=O)OP(O)(O)=O)O2)C(=O)NC1=O
InChI Identifier
InChI=1S/C10H16N2O11P2/c1-5-3-12(10(15)11-9(5)14)8-2-6(13)7(22-8)4-21-25(19,20)23-24(16,17)18/h3,6-8,13H,2,4H2,1H3,(H,19,20)(H,11,14,15)(H2,16,17,18)/t6-,7+,8+/m0/s1
InChI KeyInChIKey=UJLXYODCHAELLY-XLPZGREQSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as pyrimidine 2'-deoxyribonucleoside diphosphates. These are pyrimidine nucleotides with a diphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPyrimidine nucleotides
Sub ClassPyrimidine deoxyribonucleotides
Direct ParentPyrimidine 2'-deoxyribonucleoside diphosphates
Alternative Parents
Substituents
  • Pyrimidine 2'-deoxyribonucleoside diphosphate
  • Organic pyrophosphate
  • Monoalkyl phosphate
  • Pyrimidone
  • Alkyl phosphate
  • Pyrimidine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • Hydropyrimidine
  • Heteroaromatic compound
  • Vinylogous amide
  • Oxolane
  • Urea
  • Secondary alcohol
  • Lactam
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
Biofunction
  • Component of Pyrimidine metabolism
ApplicationNot Available
Cellular locations
  • Mitochondria
  • Nucleus
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility6.94 mg/mLALOGPS
logP-0.87ALOGPS
logP-1.7ChemAxon
logS-1.8ALOGPS
pKa (Strongest Acidic)1.77ChemAxon
pKa (Strongest Basic)-3.2ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area192.16 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity77.16 m3·mol-1ChemAxon
Polarizability32.13 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-0900000000-f02dc55e07c9935275d9View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-004i-4901000000-bc16523808594ec9a806View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-004i-5900000000-2199218952cf36a3e3a2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udi-2607900000-696f76b41235895dc296View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-004i-9801000000-9bc55b2280dfcf3aed1dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9100000000-d33e29452de0777eaa0dView in MoNA
Biological Properties
Cellular Locations
  • Mitochondria
  • Nucleus
Biofluid LocationsNot Available
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Beta Ureidopropionase DeficiencySMP00172Not Available
Dihydropyrimidinase DeficiencySMP00178Not Available
MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy)SMP00202Not Available
Pyrimidine MetabolismSMP00046map00240
UMP Synthase Deiciency (Orotic Aciduria)SMP00219Not Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID144320
KEGG Compound IDC00363
BioCyc IDTDP
BiGG ID34750
Wikipedia LinkNot Available
NuGOwiki LinkHMDB01274
Metagene LinkHMDB01274
METLIN ID6129
PubChem Compound164628
PDB IDTYD
ChEBI ID18075
References
Synthesis ReferenceRupprath, Carsten; Kopp, Maren; Hirtz, Dennis; Mueller, Rolf; Elling, Lothar. An enzyme module system for in situ regeneration of deoxythymidine 5'-diphosphate (dTDP)-activated deoxy sugars. Advanced Synthesis & Catalysis (2007), 349(8+9), 1489-1496.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bialkowski K, Kasprzak KS: Inhibition of 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity of the antimutagenic human MTH1 protein by nucleoside 5'-diphosphates. Free Radic Biol Med. 2003 Sep 15;35(6):595-602. [12957652 ]
  2. Dahlmann N: Human serum thymidine triphosphate nucleotidohydrolase: purification and properties of a new enzyme. Biochemistry. 1982 Dec 21;21(26):6634-9. [6297538 ]
  3. Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM: Analysis of a gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect Immun. 2000 Feb;68(2):815-23. [10639451 ]
  4. Vallon O: New sequence motifs in flavoproteins: evidence for common ancestry and tools to predict structure. Proteins. 2000 Jan 1;38(1):95-114. [10651042 ]
  5. Sheu SJ, Wu SN: Mechanism of inhibitory actions of oxidizing agents on calcium-activated potassium current in cultured pigment epithelial cells of the human retina. Invest Ophthalmol Vis Sci. 2003 Mar;44(3):1237-44. [12601054 ]
  6. Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G: Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 2000 Jan 13;19(2):307-14. [10645010 ]
  7. Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, El Sahly H, Moghazeh SL, Kreiswirth BN, Musser JM: Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000 Feb;44(2):326-36. [10639358 ]
  8. Tomioka H: [Prospects for development of new antituberculous drugs] Kekkaku. 2002 Aug;77(8):573-84. [12235850 ]
  9. Kuo SY, Jiann BP, Lu YC, Chang HT, Chen WC, Huang JK, Jan CR: Thiol oxidation by 2,2'-dithiodipyridine induced calcium mobilization in MG63 human osteosarcoma cells. Life Sci. 2003 Feb 28;72(15):1733-43. [12559394 ]
  10. Riener CK, Kada G, Gruber HJ: Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4'-dithiodipyridine. Anal Bioanal Chem. 2002 Jul;373(4-5):266-76. Epub 2002 Jun 6. [12110978 ]
  11. Ahmed IH, Manning G, Wassenaar TM, Cawthraw S, Newell DG: Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology. 2002 Apr;148(Pt 4):1203-12. [11932464 ]
  12. Kuo SY, Ho CM, Chen WC, Jan CR: Sulfhydryl modification by 4,4'-dithiodipyridine induces calcium mobilization in human osteoblast-like cells. Arch Toxicol. 2003 Nov;77(11):630-7. Epub 2003 Aug 20. [12928766 ]

Enzymes

General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Inhibitor of p53-induced apoptosis.
Gene Name:
NME6
Uniprot ID:
O75414
Molecular weight:
22002.965
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails
General function:
Involved in calcium ion binding
Specific function:
Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis.
Gene Name:
CANT1
Uniprot ID:
Q8WVQ1
Molecular weight:
44839.24
General function:
Involved in thymidylate kinase activity
Specific function:
Catalyzes the conversion of dTMP to dTDP.
Gene Name:
DTYMK
Uniprot ID:
P23919
Molecular weight:
23819.105
Reactions
Adenosine triphosphate + 5-Thymidylic acid → ADP + dTDPdetails
General function:
Involved in ATP binding
Specific function:
May contribute to UTP accumulation needed for blast transformation and proliferation.
Gene Name:
UCKL1
Uniprot ID:
Q9NWZ5
Molecular weight:
59465.77
Reactions
Thymidine 5'-triphosphate + Cytidine → dTDP + Cytidine monophosphatedetails
Thymidine 5'-triphosphate + Uridine → dTDP + Uridine 5'-monophosphatedetails
General function:
Involved in ATP binding
Specific function:
Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate. Does not phosphorylate deoxyribonucleosides or purine ribonucleosides. Can use ATP or GTP as a phosphate donor. Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine.
Gene Name:
UCK2
Uniprot ID:
Q9BZX2
Molecular weight:
29298.92
Reactions
Thymidine 5'-triphosphate + Cytidine → dTDP + Cytidine monophosphatedetails
Thymidine 5'-triphosphate + Uridine → dTDP + Uridine 5'-monophosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination.
Gene Name:
NME1
Uniprot ID:
P15531
Molecular weight:
17148.635
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Negatively regulates Rho activity by interacting with AKAP13/LBC. Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (PubMed:8392752). Exhibits histidine protein kinase activity.
Gene Name:
NME2
Uniprot ID:
P22392
Molecular weight:
30136.92
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP (By similarity).
Gene Name:
NME4
Uniprot ID:
O00746
Molecular weight:
20658.45
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails
General function:
Involved in hydrolase activity
Specific function:
Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP.
Gene Name:
ENTPD8
Uniprot ID:
Q5MY95
Molecular weight:
53903.14
Reactions
dTDP + Water → 5-Thymidylic acid + Phosphoric aciddetails
Thymidine 5'-triphosphate + Water → dTDP + Phosphoric aciddetails
General function:
Involved in hydrolase activity
Specific function:
In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Could also be implicated in the prevention of platelet aggregation by hydrolyzing platelet-activating ADP to AMP. Hydrolyzes ATP and ADP equally well.
Gene Name:
ENTPD1
Uniprot ID:
P49961
Molecular weight:
58706.0
Reactions
dTDP + Water → 5-Thymidylic acid + Phosphoric aciddetails
Thymidine 5'-triphosphate + Water → dTDP + Phosphoric aciddetails
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
TGDS
Uniprot ID:
O95455
Molecular weight:
40213.665
General function:
Involved in hydrolase activity
Specific function:
Probably mediates the hydrolysis of some nucleoside diphosphate derivatives
Gene Name:
NUDT8
Uniprot ID:
Q8WV74
Molecular weight:
25370.0
General function:
Involved in 3'-5'-exoribonuclease activity
Specific function:
RNA-binding protein implicated in numerous RNA metabolic processes. Hydrolyzes single-stranded polyribonucleotides processively in the 3'-to-5' direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Required for correct processing and polyadenylation of mitochondrial mRNAs. Plays a role as a cytoplasmic RNA import factor that mediates the translocation of small RNA components, like the 5S RNA, the RNA subunit of ribonuclease P and the mitochondrial RNA-processing (MRP) RNA, into the mitochondrial matrix. Plays a role in mitochondrial morphogenesis and respiration; regulates the expression of the electron transport chain (ETC) components at the mRNA and protein levels. In the cytoplasm, shows a 3'-to-5' exoribonuclease mediating mRNA degradation activity; degrades c-myc mRNA upon treatment with IFNB1/IFN-beta, resulting in a growth arrest in melanoma cells. Regulates the stability of specific mature miRNAs in melanoma cells; specifically and selectively degrades miR-221, preferentially. Plays also a role in RNA cell surveillance by cleaning up oxidized RNAs. Binds to the RNA subunit of ribonuclease P, MRP RNA and miR-221 microRNA.
Gene Name:
PNPT1
Uniprot ID:
Q8TCS8
Molecular weight:
85949.84
General function:
Involved in hydrolase activity
Specific function:
Probably mediates the hydrolysis of some nucleoside diphosphate derivatives
Gene Name:
NUDT17
Uniprot ID:
P0C025
Molecular weight:
35923.1
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Probably has a role in normal hematopoiesis by inhibition of granulocyte differentiation and induction of apoptosis.
Gene Name:
NME3
Uniprot ID:
Q13232
Molecular weight:
19014.85
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails
General function:
Involved in hydrolase activity
Specific function:
Mediates the hydrolysis of some nucleoside diphosphate derivatives. Can degrade 8-oxo-dGTP in vitro, suggesting that it may remove an oxidatively damaged form of guanine (7,8-dihydro-8-oxoguanine) from DNA and the nucleotide pool, thereby preventing misincorporation of 8-oxo-dGTP into DNA thus preventing A:T to C:G transversions. Its substrate specificity in vivo however remains unclear (By similarity). May have a role in DNA synthesis and cell cycle progression through the interaction with PCNA.
Gene Name:
NUDT15
Uniprot ID:
Q9NV35
Molecular weight:
18608.965
General function:
Involved in hydrolase activity
Specific function:
Mediates the hydrolyzis of oxidized nucleoside diphosphate derivatives. Hydrolyzes 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing deoxyribo- and ribonucleoside diphosphates to the monophosphates. Hydrolyzes 8-oxo-dGDP and 8-oxo-GDP with the same efficiencies. Hydrolyzes also 8-OH-dADP and 2-OH-dADP. Exhibited no or minimal hydrolyzis activity against 8-oxo-dGTP, 8-oxo-GTP, dGTP, GTP, dGDP and GDP. Probably removes oxidized guanine nucleotides from both the DNA and RNA precursor pools.
Gene Name:
NUDT18
Uniprot ID:
Q6ZVK8
Molecular weight:
35500.76
General function:
Involved in hydrolase activity
Specific function:
Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5'-diphosphates, nucleoside 5'-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5'-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity).
Gene Name:
ENTPD6
Uniprot ID:
O75354
Molecular weight:
51159.26
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate
Gene Name:
NME2P1
Uniprot ID:
O60361
Molecular weight:
15529.0
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate
Gene Name:
NME4
Uniprot ID:
A2IDD0
Molecular weight:
12978.5
General function:
Involved in hydrolase activity
Specific function:
Uridine diphosphatase (UDPase) that promotes protein N-glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. Also hydrolyzes GDP and IDP but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. Plays a key role in the AKT1-PTEN signaling pathway by promoting glycolysis in proliferating cells in response to phosphoinositide 3-kinase (PI3K) signaling (By similarity).
Gene Name:
ENTPD5
Uniprot ID:
O75356
Molecular weight:
47516.985
General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes preferentially nucleoside 5'-diphosphates, nucleoside 5'-triphosphates are hydrolyzed only to a minor extent. The order of activity with different substrates is UDP >> GDP = CDP = TDP, AMP, ADP, ATP and UMP are not substrates. Preferred substrates for isoform 2 are CTP, UDP, CDP, GTP and GDP, while isoform 1 utilizes UTP and TTP.
Gene Name:
ENTPD4
Uniprot ID:
Q9Y227
Molecular weight:
69419.915
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate.
Gene Name:
NME7
Uniprot ID:
Q9Y5B8
Molecular weight:
42491.365
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails
General function:
Involved in hydrolase activity
Specific function:
Has a threefold preference for the hydrolysis of ATP over ADP.
Gene Name:
ENTPD3
Uniprot ID:
O75355
Molecular weight:
59104.76
Reactions
dTDP + Water → 5-Thymidylic acid + Phosphoric aciddetails
Thymidine 5'-triphosphate + Water → dTDP + Phosphoric aciddetails
General function:
Involved in ATP binding
Specific function:
Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate. Does not phosphorylate deoxyribonucleosides or purine ribonucleosides. Can use ATP or GTP as a phosphate donor. Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine.
Gene Name:
UCK1
Uniprot ID:
Q9HA47
Molecular weight:
22760.43
Reactions
Thymidine 5'-triphosphate + Cytidine → dTDP + Cytidine monophosphatedetails
Thymidine 5'-triphosphate + Uridine → dTDP + Uridine 5'-monophosphatedetails
General function:
Not Available
Specific function:
Does not seem to have NDK kinase activity. Confers protection from cell death by Bax and alters the cellular levels of several antioxidant enzymes including Gpx5. May play a role in spermiogenesis by increasing the ability of late-stage spermatids to eliminate reactive oxygen species (By similarity).
Gene Name:
NME5
Uniprot ID:
P56597
Molecular weight:
Not Available
Reactions
Adenosine triphosphate + dTDP → ADP + Thymidine 5'-triphosphatedetails