You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:04:24 UTC
HMDB IDHMDB01359
Secondary Accession Numbers
  • HMDB06504
Metabolite Identification
Common NamePhytanoyl-CoA
DescriptionPhytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsum's syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235 ). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463 ). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698 ).
Structure
Thumb
Synonyms
ValueSource
3,7,11,15-Tetramethyl hexadecanoyl CoAHMDB
3,7,11,15-Tetramethyl hexadecanoyl coenzyme AHMDB
Phytanoyl CoAHMDB
Phytanoyl coenzyme AHMDB
Phytanoyl-coenzyme AHMDB
Phytanyl CoAHMDB
Phytanyl coenzyme AHMDB
Chemical FormulaC41H74N7O17P3S
Average Molecular Weight1062.049
Monoisotopic Molecular Weight1061.407474203
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional Name[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[({hydroxy[hydroxy(3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy)phosphoryl]oxyphosphoryl}oxy)methyl]oxolan-3-yl]oxyphosphonic acid
CAS Registry Number146622-45-9
SMILES
CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC[C@H](C)CC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1S/C41H74N7O17P3S/c1-26(2)11-8-12-27(3)13-9-14-28(4)15-10-16-29(5)21-32(50)69-20-19-43-31(49)17-18-44-39(53)36(52)41(6,7)23-62-68(59,60)65-67(57,58)61-22-30-35(64-66(54,55)56)34(51)40(63-30)48-25-47-33-37(42)45-24-46-38(33)48/h24-30,34-36,40,51-52H,8-23H2,1-7H3,(H,43,49)(H,44,53)(H,57,58)(H,59,60)(H2,42,45,46)(H2,54,55,56)/t27-,28-,29+,30-,34-,35-,36?,40-/m1/s1
InChI KeyInChIKey=NRJQGHHZMSOUEN-IYJVDCLDSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as 2,3,4-saturated fatty acyl coas. These are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct Parent2,3,4-saturated fatty acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside 3',5'-bisphosphate
  • Diterpenoid
  • N-glycosyl compound
  • Glycosyl compound
  • Beta amino acid or derivatives
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • N-acyl-amine
  • Monosaccharide
  • Fatty amide
  • Saccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Thiocarboxylic acid ester
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Sulfenyl compound
  • Thioether
  • Thiocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Lipid biosynthesis, Fatty acid transport
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.77 mg/mLALOGPS
logP3ALOGPS
logP0.65ChemAxon
logS-3.1ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 Å2ChemAxon
Rotatable Bond Count34ChemAxon
Refractivity254.84 m3·mol-1ChemAxon
Polarizability106.07 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Peroxisome
Biofluid LocationsNot Available
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Oxidation of Branched Chain Fatty AcidsSMP00030Not Available
Phytanic Acid Peroxisomal OxidationSMP00450Not Available
Refsum DiseaseSMP00451Not Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022577
KNApSAcK IDNot Available
Chemspider ID388712
KEGG Compound IDC02060
BioCyc IDCPD-206
BiGG ID2364522
Wikipedia LinkNot Available
NuGOwiki LinkHMDB01359
Metagene LinkHMDB01359
METLIN ID6189
PubChem Compound439640
PDB IDNot Available
ChEBI ID15538
References
Synthesis ReferenceKershaw, N. J.; Mukherji, M.; MacKinnon, C. H.; Claridge, T. D. W.; Odell, B.; Wierzbicki, A. S.; Lloyd, M. D.; Schofield, C. J. Studies on phytanoyl-CoA 2-hydroxylase and synthesis of phytanoyl-Coenzyme A. Bioorganic & Medicinal Chemistry Letters (2001),
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bunik VI, Raddatz G, Wanders RJ, Reiser G: Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid. FEBS Lett. 2006 Jun 12;580(14):3551-7. Epub 2006 May 24. [16737698 ]
  2. Schofield CJ, McDonough MA: Structural and mechanistic studies on the peroxisomal oxygenase phytanoyl-CoA 2-hydroxylase (PhyH). Biochem Soc Trans. 2007 Nov;35(Pt 5):870-5. [17956235 ]
  3. Hostetler HA, Kier AB, Schroeder F: Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor alpha (PPARalpha). Biochemistry. 2006 Jun 20;45(24):7669-81. [16768463 ]

Enzymes

General function:
Involved in acyltransferase activity
Specific function:
Carnitine acetylase is specific for short chain fatty acids. Carnitine acetylase seems to affect the flux through the pyruvate dehydrogenase complex. It may be involved as well in the transport of acetyl-CoA into mitochondria.
Gene Name:
CRAT
Uniprot ID:
P43155
Molecular weight:
70875.095
General function:
Involved in electron carrier activity
Specific function:
Converts phytanoyl-CoA to 2-hydroxyphytanoyl-CoA.
Gene Name:
PHYH
Uniprot ID:
O14832
Molecular weight:
38538.065
Reactions
Phytanoyl-CoA + Oxoglutaric acid + Oxygen → 2-Hydroxyphytanoyl-CoA + Succinic acid + CO(2)details
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitoleate, oleate and linoleate.
Gene Name:
ACSL1
Uniprot ID:
P33121
Molecular weight:
77942.685