You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-05-22 14:17:31 UTC
Update Date2016-02-11 01:05:12 UTC
HMDB IDHMDB02009
Secondary Accession NumbersNone
Metabolite Identification
Common NameCrotonoyl-CoA
DescriptionCrotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.
Structure
Thumb
Synonyms
ValueSource
2-Butenoyl-CoAHMDB
2-Butenoyl-coenzyme AHMDB
But-2-enoyl-CoAHMDB
But-2-enoyl-coenzyme AHMDB
Crotonyl-coenzyme AHMDB
S-But-2-enoylcoenzyme AHMDB
trans-But-2-enoyl-CoAHMDB
trans-But-2-enoyl-coenzyme AHMDB
Chemical FormulaC25H40N7O17P3S
Average Molecular Weight835.608
Monoisotopic Molecular Weight835.141423115
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-{[({[(3-{[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]methyl}-4-hydroxyoxolan-3-yl]oxy}phosphonic acid
Traditional Name[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-2-({[(3-{[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy(hydroxy)phosphoryl)oxy(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxyphosphonic acid
CAS Registry Number102680-35-3
SMILES
C\C=C\C(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C(N)N=CN=C12
InChI Identifier
InChI=1S/C25H40N7O17P3S/c1-4-5-16(34)53-9-8-27-15(33)6-7-28-23(37)20(36)25(2,3)11-46-52(43,44)49-51(41,42)45-10-14-19(48-50(38,39)40)18(35)24(47-14)32-13-31-17-21(26)29-12-30-22(17)32/h4-5,12-14,18-20,24,35-36H,6-11H2,1-3H3,(H,27,33)(H,28,37)(H,41,42)(H,43,44)(H2,26,29,30)(H2,38,39,40)/b5-4+/t14-,18-,19-,20?,24-/m1/s1
InChI KeyInChIKey=KFWWCMJSYSSPSK-BOGFJHSMSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as acyl coas. These are organic compounds containing a coenzyme A substructure linked to an acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentAcyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside 3',5'-bisphosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Thiocarboxylic acid ester
  • Secondary alcohol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Sulfenyl compound
  • Thioether
  • Thiocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Carboximidic acid derivative
  • Carboximidic acid
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Component of Benzoate metabolism via CoA ligation
  • Component of Butanoate metabolism
  • Component of Fatty acid metabolism
  • Component of Lysine Degradation
  • Component of Tryptophan metabolism
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
  • Mitochondria
  • Peroxisome
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.67 mg/mLALOGPS
logP-0.11ALOGPS
logP-5.6ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 Å2ChemAxon
Rotatable Bond Count21ChemAxon
Refractivity182.53 m3·mol-1ChemAxon
Polarizability73.19 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-1901000120-017aeb03ebd91e701248View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-1912000000-1727557fedacd67ecc0cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-2911000000-476bc5abc1a151d6d872View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00lr-7930140550-fee62adcd8bdf1cc9ba2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00o0-6910100010-21179bc614a07310997eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-6900100000-973d74ae97aba1d99ab1View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
  • Mitochondria
  • Peroxisome
Biofluid LocationsNot Available
Tissue Location
  • Liver
Pathways
NameSMPDB LinkKEGG Link
2-aminoadipic 2-oxoadipic aciduriaSMP00719Not Available
Butyrate MetabolismSMP00073map00650
Carnitine palmitoyl transferase deficiency (I)SMP00538Not Available
Carnitine palmitoyl transferase deficiency (II)SMP00541Not Available
Ethylmalonic EncephalopathySMP00181Not Available
Fatty acid MetabolismSMP00051map00071
Glutaric Aciduria Type ISMP00185Not Available
Glutaric Aciduria Type ISMP00186Not Available
Hyperlysinemia I, FamilialSMP00527Not Available
Hyperlysinemia II or SaccharopinuriaSMP00528Not Available
Long chain acyl-CoA dehydrogenase deficiency (LCAD)SMP00539Not Available
Lysine DegradationSMP00037map00310
Medium chain acyl-coa dehydrogenase deficiency (MCAD)SMP00542Not Available
Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty AcidsSMP00480Not Available
Pyridoxine dependency with seizuresSMP00571Not Available
Saccharopinuria/Hyperlysinemia IISMP00239Not Available
Short Chain Acyl CoA Dehydrogenase Deficiency (SCAD Deficiency)SMP00235Not Available
Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (SCHAD)SMP00568Not Available
Trifunctional protein deficiencySMP00545Not Available
Very-long-chain acyl coa dehydrogenase deficiency (VLCAD)SMP00540Not Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB022792
KNApSAcK IDNot Available
Chemspider ID4444072
KEGG Compound IDC00877
BioCyc IDCPD-1083
BiGG ID36265
Wikipedia LinkCrotonyl-coenzyme A
NuGOwiki LinkHMDB02009
Metagene LinkHMDB02009
METLIN ID440
PubChem Compound5280381
PDB IDNot Available
ChEBI ID15473
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Fu Z, Wang M, Paschke R, Rao KS, Frerman FE, Kim JJ: Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Biochemistry. 2004 Aug 3;43(30):9674-84. [15274622 ]
  2. Hyman DB, Tanaka K: Specific glutaryl-CoA dehydrogenating activity is deficient in cultured fibroblasts from glutaric aciduria patients. J Clin Invest. 1984 Mar;73(3):778-84. [6423663 ]
  3. Kalousek F, Darigo MD, Rosenberg LE: Isolation and characterization of propionyl-CoA carboxylase from normal human liver. Evidence for a protomeric tetramer of nonidentical subunits. J Biol Chem. 1980 Jan 10;255(1):60-5. [6765947 ]
  4. Dwyer TM, Rao KS, Westover JB, Kim JJ, Frerman FE: The function of Arg-94 in the oxidation and decarboxylation of glutaryl-CoA by human glutaryl-CoA dehydrogenase. J Biol Chem. 2001 Jan 5;276(1):133-8. [11024031 ]
  5. Babidge W, Millard S, Roediger W: Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis. Mol Cell Biochem. 1998 Apr;181(1-2):117-24. [9562248 ]
  6. Lenich AC, Goodman SI: The purification and characterization of glutaryl-coenzyme A dehydrogenase from porcine and human liver. J Biol Chem. 1986 Mar 25;261(9):4090-6. [3081514 ]
  7. Gregersen N, Brandt NJ, Christensen E, Gron I, Rasmussen K, Brandt S: Glutaric aciduria: clinical and laboratory findings in two brothers. J Pediatr. 1977 May;90(5):740-5. [853337 ]
  8. Hodgins MB: Possible mechanisms of androgen resistance in 5 alpha-reductase deficiency: implications for the physiological roles of 5 alpha-reductases. J Steroid Biochem. 1983 Jul;19(1B):555-9. [6887883 ]
  9. Saenger AK, Nguyen TV, Vockley J, Stankovich MT: Thermodynamic regulation of human short-chain acyl-CoA dehydrogenase by substrate and product binding. Biochemistry. 2005 Dec 13;44(49):16043-53. [16331964 ]
  10. Finocchiaro G, Ito M, Tanaka K: Purification and properties of short chain acyl-CoA, medium chain acyl-CoA, and isovaleryl-CoA dehydrogenases from human liver. J Biol Chem. 1987 Jun 15;262(17):7982-9. [3597357 ]

Only showing the first 50 proteins. There are 114 proteins in total.

Enzymes

General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADS
Uniprot ID:
P16219
Molecular weight:
44296.705
Reactions
Butyryl-CoA + electron-transfer flavoprotein → Crotonoyl-CoA + reduced electron-transfer flavoproteindetails
General function:
Involved in catalytic activity
Specific function:
Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate.
Gene Name:
ECHS1
Uniprot ID:
P30084
Molecular weight:
31387.085
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
Gene Name:
ACOX1
Uniprot ID:
Q15067
Molecular weight:
70135.205
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent.
Gene Name:
ACADSB
Uniprot ID:
P45954
Molecular weight:
47485.035
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
This enzyme is specific for acyl chain lengths of 4 to 16.
Gene Name:
ACADM
Uniprot ID:
P11310
Molecular weight:
46587.98
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. Isoform Short is inactive.
Gene Name:
GCDH
Uniprot ID:
Q92947
Molecular weight:
48126.715
General function:
Involved in oxidoreductase activity
Specific function:
Bifunctional subunit.
Gene Name:
HADHA
Uniprot ID:
P40939
Molecular weight:
82998.97
General function:
Involved in oxidoreductase activity, acting on the CH-CH group of donors
Specific function:
Oxidizes the CoA-esters of 2-methyl-branched fatty acids (By similarity).
Gene Name:
ACOX3
Uniprot ID:
O15254
Molecular weight:
69574.075
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid.
Gene Name:
ACSL6
Uniprot ID:
Q9UKU0
Molecular weight:
80609.765
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids.
Gene Name:
ACOX2
Uniprot ID:
Q99424
Molecular weight:
76826.14
General function:
Involved in acyl-CoA binding
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Q53GC8
Molecular weight:
40210.7
General function:
Involved in catalytic activity
Specific function:
Has medium-chain fatty acid:CoA ligase activity with broad substrate specificity (in vitro). Acts on acids from C(4) to C(11) and on the corresponding 3-hydroxy- and 2,3- or 3,4-unsaturated acids (in vitro) (By similarity).
Gene Name:
ACSM4
Uniprot ID:
P0C7M7
Molecular weight:
65702.225
General function:
Involved in acyltransferase activity
Specific function:
Possesses both acyltransferase and acetyltransferase activities. Activity is calcium-independent. Mediates the conversion of 1-acyl-sn-glycero-3-phosphocholine (LPC) into phosphatidylcholine (PC). Displays a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl or 1-palmitoyl LPC as acyl donors and acceptors, respectively. May synthesize phosphatidylcholine in pulmonary surfactant, thereby playing a pivotal role in respiratory physiology.
Gene Name:
LPCAT1
Uniprot ID:
Q8NF37
Molecular weight:
59150.675
General function:
Involved in acyltransferase activity
Specific function:
Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Active against both saturated and unsaturated long-chain fatty acyl-CoAs.
Gene Name:
AGPAT6
Uniprot ID:
Q86UL3
Molecular weight:
52070.605
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Essential acyltransferase that catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. Required for synthesis and storage of intracellular triglycerides. Probably plays a central role in cytosolic lipid accumulation. In liver, is primarily responsible for incorporating endogenously synthesized fatty acids into triglycerides (By similarity). Functions also as an acyl-CoA retinol acyltransferase (ARAT).
Gene Name:
DGAT2
Uniprot ID:
Q96PD7
Molecular weight:
39043.88
General function:
Involved in catalytic activity
Specific function:
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).
Gene Name:
BCKDHB
Uniprot ID:
P21953
Molecular weight:
43122.065
General function:
Involved in acyl-CoA binding
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Q53HG3
Molecular weight:
40110.7
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Probable acyltransferase uses fatty acyl-CoA as substrate
Gene Name:
DGAT2L7
Uniprot ID:
Q6IED9
Molecular weight:
27571.0
General function:
Involved in acyl-CoA binding
Specific function:
Catalyzes the formation of fatty acid-cholesterol esters. Plays a role in lipoprotein assembly and dietary cholesterol absorption. In addition to its acyltransferase activity, it may act as a ligase.
Gene Name:
SOAT1
Uniprot ID:
P35610
Molecular weight:
58130.665
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity). Succinyl-CoA thioesterase that also hydrolyzes long chain saturated and unsaturated monocarboxylic acyl-CoAs.
Gene Name:
ACOT4
Uniprot ID:
Q8N9L9
Molecular weight:
46326.09
General function:
Lipid transport and metabolism
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone.
Gene Name:
AGPAT2
Uniprot ID:
O15120
Molecular weight:
27278.915
General function:
Involved in acyltransferase activity
Specific function:
Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis.
Gene Name:
GPAM
Uniprot ID:
Q9HCL2
Molecular weight:
93793.895
General function:
Involved in catalytic activity
Specific function:
Has medium-chain fatty acid:CoA ligase activity with broad substrate specificity (in vitro). Acts on acids from C(4) to C(11) and on the corresponding 3-hydroxy- and 2,3- or 3,4-unsaturated acids (in vitro) (By similarity).
Gene Name:
ACSM2A
Uniprot ID:
Q08AH3
Molecular weight:
64223.7
General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes acyl-CoA thioesters (in vitro). Has a preference for substrates with medium chain length (C10-C14). Inactive towards substrates with C18 or C20 aliphatic chains. Its physiological function is not known
Gene Name:
C9orf156
Uniprot ID:
Q9BU70
Molecular weight:
48586.5
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Active toward esters of long-chain and very long chain fatty acids such as palmitoyl-CoA, mysritoyl-CoA and stearoyl-CoA. Can accommodate substrate acyl chain lengths as long as 24 carbons, but shows little activity for substrates of less than 12 carbons.
Gene Name:
ACADVL
Uniprot ID:
P49748
Molecular weight:
70389.58
General function:
Involved in acyl-CoA binding
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Q59E94
Molecular weight:
25830.2
General function:
Involved in oxidoreductase activity, acting on the CH-CH group of donors
Specific function:
Not Available
Gene Name:
ACOXL
Uniprot ID:
Q9NUZ1
Molecular weight:
61795.0
General function:
Involved in acyltransferase activity
Specific function:
Acyl-CoA:lysocardiolipin acyltransferase. Possesses both lysophosphatidylinositol acyltransferase (LPIAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities. Recognizes both monolysocardiolipin and dilysocardiolipin as substrates with a preference for linoleoyl-CoA and oleoyl-CoA as acyl donors. Acts as a remodeling enzyme for cardiolipin, a major membrane polyglycerophospholipid. Converts lysophosphatidic acid (LPA) into phosphatidic acid (PA) with a relatively low activity. Required for establishment of the hematopoietic and endothelial lineages.
Gene Name:
LCLAT1
Uniprot ID:
Q6UWP7
Molecular weight:
44560.815
General function:
Lipid transport and metabolism
Specific function:
Not Available
Gene Name:
GNPAT
Uniprot ID:
O15228
Molecular weight:
77187.185
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Active on long chain acyl-CoAs
Gene Name:
ACOT9
Uniprot ID:
Q9Y305
Molecular weight:
49901.3
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
HADHB
Uniprot ID:
P55084
Molecular weight:
51293.955
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Abolishes BNIP3-mediated apoptosis and mitochondrial damage.
Gene Name:
ACAA2
Uniprot ID:
P42765
Molecular weight:
41923.82
General function:
Involved in diacylglycerol O-acyltransferase activity
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders.
Gene Name:
DGAT1
Uniprot ID:
O75907
Molecular weight:
55277.735
General function:
Involved in acyltransferase activity
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (By similarity).
Gene Name:
AGPAT4
Uniprot ID:
Q9NRZ5
Molecular weight:
44020.935
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthases catalyze the initial reaction in fatty acid metabolism, by forming a thioester with CoA. May have some preference toward very-long-chain substrates
Gene Name:
ACSF3
Uniprot ID:
Q4G176
Molecular weight:
64129.6
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Probable acyltransferase uses fatty acyl-CoA as substrate. Has no wax synthase activity to produce wax esters
Gene Name:
DGAT2L6
Uniprot ID:
Q6ZPD8
Molecular weight:
38592.9
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Active towards fatty acyl-CoA with chain-lengths of C12-C16 (By similarity).
Gene Name:
ACOT1
Uniprot ID:
Q86TX2
Molecular weight:
46276.96
General function:
Involved in catalytic activity
Specific function:
Has medium-chain fatty acid:CoA ligase activity with broad substrate specificity (in vitro). Acts on acids from C(4) to C(11) and on the corresponding 3-hydroxy- and 2,3- or 3,4-unsaturated acids (in vitro) (By similarity).
Gene Name:
ACSM3
Uniprot ID:
Q53FZ2
Molecular weight:
66152.235
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
ACSM6
Uniprot ID:
Q6P461
Molecular weight:
53584.545
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
IVD
Uniprot ID:
P26440
Molecular weight:
43055.325
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Catalyzes the formation of diacylglycerol from 2-monoacylglycerol and fatty acyl-CoA. Also able to catalyze the terminal step in triacylglycerol synthesis by using diacylglycerol and fatty acyl-CoA as substrates. Has a preference toward palmitoyl-CoA and oleoyl-CoA. May be involved in absorption of dietary fat in the small intestine by catalyzing the resynthesis of triacylglycerol in enterocytes.
Gene Name:
MOGAT3
Uniprot ID:
Q86VF5
Molecular weight:
38729.84
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Acyltransferase that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. Wax esters are enriched in sebum, suggesting that it plays a central role in lipid metabolism in skin. Has a preference for arachidyl alcohol as well as decyl alcohol, demonstrating its relatively poor activity using saturated long chain alcohols (C16, C18, and C20).
Gene Name:
AWAT1
Uniprot ID:
Q58HT5
Molecular weight:
37758.815
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N-acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.
Gene Name:
ACOT8
Uniprot ID:
O14734
Molecular weight:
35914.02
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Acyltransferase which transfers an acyl group to the N-terminus of glutamine. Can use phenylacetyl-CoA as an acyl donor.
Gene Name:
GLYATL1
Uniprot ID:
Q969I3
Molecular weight:
35100.895
General function:
Involved in acyltransferase activity
Specific function:
Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Overexpression activates the mTOR pathway.
Gene Name:
AGPAT9
Uniprot ID:
Q53EU6
Molecular weight:
48704.805
General function:
Involved in catalytic activity
Specific function:
Has acyl-CoA ligase activity for long-chain and very- long-chain fatty acids. Does not exhibit fatty acid transport activity
Gene Name:
SLC27A3
Uniprot ID:
Q5K4L6
Molecular weight:
78643.4
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Displays high levels of activity on medium- and long chain acyl CoAs.
Gene Name:
ACOT2
Uniprot ID:
P49753
Molecular weight:
53218.02
General function:
Involved in acyltransferase activity
Specific function:
Displays acyl-CoA-dependent lysophospholipid acyltransferase activity with a subset of lysophospholipids as substrates; converts lysophosphatidylethanolamine to phosphatidylethanolamine, lysophosphatidylcholine to phosphatidycholine, 1-alkenyl-lysophatidylethanolamine to 1- alkenyl-phosphatidylethanolamine, lysophosphatidylglycerol and alkyl-lysophosphatidylcholine to phosphatidylglycerol and alkyl- phosphatidylcholine, respectively. In contrast, has no lysophosphatidylinositol, glycerol-3-phosphate, diacylglycerol or lysophosphatidic acid acyltransferase activity. Prefers long chain acyl-CoAs (C16, C18) as acyl donors
Gene Name:
LPCAT4
Uniprot ID:
Q643R3
Molecular weight:
57218.6
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity).
Gene Name:
ACOT7L
Uniprot ID:
Q6ZUV0
Molecular weight:
Not Available
General function:
Involved in catalytic activity
Specific function:
Has medium-chain fatty acid:CoA ligase activity with broad substrate specificity (in vitro). Acts on acids from C(4) to C(11) and on the corresponding 3-hydroxy- and 2,3- or 3,4-unsaturated acids (in vitro) (By similarity).
Gene Name:
ACSM5
Uniprot ID:
Q6NUN0
Molecular weight:
64759.55

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5

Only showing the first 50 proteins. There are 114 proteins in total.