You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Creation Date2006-05-22 15:12:05 UTC
Update Date2016-02-11 01:05:46 UTC
Secondary Accession Numbers
  • HMDB05078
Metabolite Identification
Common NameProstaglandin J2
DescriptionProstaglandin J2 (PGJ2) is an endogenous product of inflammation in humans. It induces neuronal death and the accumulation of ubiquitinated proteins into distinct aggregates. It may play a role in neurodegenerative disorders inducing a chain of events that culminates in neuronal cell death. An altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. The peroxisome proliferator-activated receptor gamma (PPARγ) has a fundamental role in glucose homeostasis and adipocyte differentiation. Besides linoleate, linolenate and arachidonate, the most notable PPAR ligand is 15-deoxy-delta12-14-prostaglandin J2, a natural derivative of prostaglandin D2 and PGJ2. It is therefore plausible that the production of 15d-PGJ2 within adipose tissue may act as an endogenous mediator of adipocyte differentiation. PGJ2 disrupts the cytoskeleton in neuronal cells. This cyclopentenone prostaglandin triggered endoplasmic reticulum (ER) collapse and the redistribution of ER proteins, such as calnexin and catechol-O-methyltransferase, into a large centrosomal aggregate containing ubiquitinated proteins and alpha-synuclein. The PGJ2-dependent cytoskeletal rearrangement paralleled the development of the large centrosomal aggregate. Supporting a mechanism by which, upon PGJ2 treatment, cytoskeleton/ER collapse coincides with the relocation of ER proteins, other potentially neighboring proteins, and ubiquitinated proteins into centrosomal aggregates. Development of these large perinuclear aggregates is associated with disruption of the microtubule/ER network. This aberrant protein deposition, triggered by a product of inflammation, may be common to other compounds that disrupt microtubules and induce protein aggregation, such as MPP+ and rotenone, found to be associated with neurodegeneration. Many neurodegenerative disorders, such as Parkinson disease, exhibit inclusion bodies containing ubiquitinated proteins. Concentrations of PGJ2 in biofluids have not been established, since this prostaglandin is further metabolized into delta12-PGJ2, and 15-deoxy-delta12,14-PGJ2. (PMID: 16737963 , 16842938 , 16774923 )Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes) and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signaling pathways.
9-Deoxy-delta-9-prostaglandin D2ChEBI
9-Deoxy-δ-9-prostaglandin D2Generator
11-oxo-15S-Hydroxy-5Z,8Z,13E-prostatrienoic acidHMDB
Chemical FormulaC20H30O4
Average Molecular Weight334.4498
Monoisotopic Molecular Weight334.214409448
IUPAC Name(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoic acid
Traditional Nameprostaglandin J2
CAS Registry Number60203-57-8
InChI Identifier
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentProstaglandins and related compounds
Alternative Parents
  • Prostaglandin skeleton
  • Long-chain fatty acid
  • Hydroxy fatty acid
  • Carbocyclic fatty acid
  • Fatty acid
  • Unsaturated fatty acid
  • Cyclic ketone
  • Secondary alcohol
  • Ketone
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
StatusDetected and Quantified
  • Endogenous
  • Food
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane (predicted from logP)
Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility0.02 mg/mLALOGPS
pKa (Strongest Acidic)4.68ChemAxon
pKa (Strongest Basic)-1.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area74.6 Å2ChemAxon
Rotatable Bond Count12ChemAxon
Refractivity99.09 m3·mol-1ChemAxon
Polarizability38.63 Å3ChemAxon
Number of Rings1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
Biofluid Locations
  • Blood
Tissue Location
  • Neuron
  • Platelet
Acetaminophen Action PathwaySMP00710Not Available
Acetylsalicylic Acid PathwaySMP00083Not Available
Antipyrine Action PathwaySMP00692Not Available
Antrafenine Action PathwaySMP00693Not Available
Arachidonic Acid MetabolismSMP00075map00590
Bromfenac PathwaySMP00102Not Available
Carprofen Action PathwaySMP00694Not Available
Celecoxib PathwaySMP00096Not Available
Diclofenac PathwaySMP00093Not Available
Diflunisal PathwaySMP00289Not Available
Etodolac PathwaySMP00084Not Available
Etoricoxib Action PathwaySMP00695Not Available
Fenoprofen Action PathwaySMP00696Not Available
Flurbiprofen Action PathwaySMP00697Not Available
Ibuprofen PathwaySMP00086Not Available
Indomethacin PathwaySMP00104Not Available
Ketoprofen PathwaySMP00085Not Available
Ketorolac PathwaySMP00098Not Available
Leukotriene C4 Synthesis DeficiencySMP00353Not Available
Lornoxicam Action PathwaySMP00700Not Available
Lumiracoxib Action PathwaySMP00699Not Available
Magnesium salicylate Action PathwaySMP00698Not Available
Mefanamic Acid PathwaySMP00109Not Available
Meloxicam PathwaySMP00106Not Available
Nabumetone PathwaySMP00114Not Available
Naproxen PathwaySMP00120Not Available
Nepafenac Action PathwaySMP00702Not Available
Oxaprozin PathwaySMP00113Not Available
Phenylbutazone Action PathwaySMP00701Not Available
Piroxicam PathwaySMP00077Not Available
Rofecoxib PathwaySMP00087Not Available
Salicylate-sodium Action PathwaySMP00708Not Available
Salicylic Acid Action PathwaySMP00709Not Available
Salsalate Action PathwaySMP00707Not Available
Sulindac PathwaySMP00094Not Available
Suprofen PathwaySMP00101Not Available
Tenoxicam Action PathwaySMP00706Not Available
Tiaprofenic Acid Action PathwaySMP00705Not Available
Tolmetin Action PathwaySMP00704Not Available
Trisalicylate-choline Action PathwaySMP00703Not Available
Valdecoxib PathwaySMP00116Not Available
Normal Concentrations
BloodDetected and Quantified2.7E-5 +/- 3E-6 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified7.2-E5 +/- 6.5-E5 uMAdult (>18 years old)Both
BloodDetected and Quantified<0.0003 uMAdult (>18 years old)Both
BloodDetected and Quantified<0.0003 uMAdult (>18 years old)Both
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB023049
KNApSAcK IDNot Available
Chemspider ID4444407
KEGG Compound IDC05957
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB02710
Metagene LinkHMDB02710
PubChem Compound5280884
PDB IDNot Available
ChEBI ID27485
Synthesis ReferenceZanoni, Giuseppe; Porta, Alessio; De Toma, Quintino; Castronovo, Francesca; Vidari, Giovanni. First Enantioselective Total Synthesis of (8S,12R,15S)-Prostaglandin J2. Journal of Organic Chemistry (2003), 68(16), 6437-6439.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Ogburn KD, Bottiglieri T, Wang Z, Figueiredo-Pereira ME: Prostaglandin J2 reduces catechol-O-methyltransferase activity and enhances dopamine toxicity in neuronal cells. Neurobiol Dis. 2006 May;22(2):294-301. Epub 2006 Jan 5. [16406650 ]
  2. Fukushima S, Takeuchi Y, Kishimoto S, Yamashita S, Uetsuki K, Shirakawa S, Suzuki M, Furuta K, Noyori R, Sasaki H, Kikuchi Y, Kita T, Yamori T, Sawada J, Kojima M, Hazato A, Kurozumi S, Fukushima M: Antitumor activity, optimum administration method and pharmacokinetics of 13,14-dihydro-15-deoxy-deoxy-Delta7 -prostaglandin A1 methyl ester (TEI-9826) integrated in lipid microspheres (Lipo TEI-9826). Anticancer Drugs. 2001 Mar;12(3):221-34. [11290870 ]
  3. Coyle AT, O'Keeffe MB, Kinsella BT: 15-deoxy Delta12,14-prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor gamma in human erythroleukemia cells. FEBS J. 2005 Sep;272(18):4754-73. [16156795 ]
  4. Wang Z, Aris VM, Ogburn KD, Soteropoulos P, Figueiredo-Pereira ME: Prostaglandin J2 alters pro-survival and pro-death gene expression patterns and 26 S proteasome assembly in human neuroblastoma cells. J Biol Chem. 2006 Jul 28;281(30):21377-86. Epub 2006 May 30. [16737963 ]
  5. Quinkler M, Bujalska IJ, Tomlinson JW, Smith DM, Stewart PM: Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene. 2006 Oct 1;380(2):137-43. Epub 2006 Jun 10. [16842938 ]
  6. Ogburn KD, Figueiredo-Pereira ME: Cytoskeleton/endoplasmic reticulum collapse induced by prostaglandin J2 parallels centrosomal deposition of ubiquitinated protein aggregates. J Biol Chem. 2006 Aug 11;281(32):23274-84. Epub 2006 Jun 14. [16774923 ]