You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-05-22 15:12:26 UTC
Update Date2016-02-11 01:05:58 UTC
HMDB IDHMDB03012
Secondary Accession NumbersNone
Metabolite Identification
Common NameAniline
DescriptionAniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th century. Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben. In 1834, Friedrich Runge isolated from coal tar a substance which produced a beautiful blue color on treatment with chloride of lime; this he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that by treating indigo with caustic potash it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit, dark-blue.
Structure
Thumb
Synonyms
ValueSource
AminobenzeneChEBI
AminophenChEBI
AnilinChEBI
BenzenamineChEBI
BenzeneamineChEBI
KyanolChEBI
PhenylamineChEBI
AnilinaHMDB
Aniline hydrobromideHMDB
Aniline reagentHMDB
AnyvimHMDB
ArylamineHMDB
BenzidamHMDB
CyanolHMDB
D'AnilineHMDB
KrystallinHMDB
Chemical FormulaC6H7N
Average Molecular Weight93.1265
Monoisotopic Molecular Weight93.057849229
IUPAC Nameaniline
Traditional Nameaniline
CAS Registry Number62-53-3
SMILES
NC1=CC=CC=C1
InChI Identifier
InChI=1S/C6H7N/c7-6-4-2-1-3-5-6/h1-5H,7H2
InChI KeyInChIKey=PAYRUJLWNCNPSJ-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as anilines. These are organic compounds containing an aminobenzene moiety.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassAnilines
Direct ParentAnilines
Alternative Parents
Substituents
  • Aniline
  • Primary aromatic amine
  • Hydrocarbon derivative
  • Primary amine
  • Organonitrogen compound
  • Amine
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locationsNot Available
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-6 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility36 mg/mL at 25 °CNot Available
LogP0.90HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility18.0 mg/mLALOGPS
logP0.89ALOGPS
logP1.14ChemAxon
logS-0.71ALOGPS
pKa (Strongest Basic)4.64ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area26.02 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity30.76 m3·mol-1ChemAxon
Polarizability10.29 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0006-9000000000-a23bad3a5415210b8e58View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-004i-9000000000-129ed2147aba87164399View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0udi-9000000000-9e60a29bae11a3beb396View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI RMU-7M) , Positivesplash10-00kf-9000000000-8e5e6fec72fd720bd3bbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI RMU-6L) , Positivesplash10-0006-9000000000-e04550d3cafee77e6192View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0006-9000000000-4a2ea8998eab06e3b7faView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-002f-9000000000-041fc0d729e6308b36ecView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-004i-9000000000-c0f67277e0af76d5d6e1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-0fb9-9000000000-35b2093eb2c81ba07d17View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-004i-9000000000-15d86b7cf94658003a7cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-03di-9000000000-fc34fd188d386065c4f5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-03dl-9000000000-fbed3991af3afeea3a79View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-0006-9000000000-0bea53746f5bc30ab770View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-0007-9000000000-971619ea8bd73637ba14View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0006-9000000000-2001822055db683e8999View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0006-9000000000-a5bc25b5010f2044b435View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 30V, Positivesplash10-0006-9000000000-8ab282b725391b0d9923View in MoNA
MSMass Spectrum (Electron Ionization)splash10-00kf-9000000000-4ba5d22a406245826ca0View in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
Biological Properties
Cellular LocationsNot Available
Biofluid Locations
  • Urine
Tissue Location
  • Bladder
  • Epidermis
  • Prostate
  • Spleen
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
UrineDetected and Quantified<1 nmol/mmol creatinineAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB003571
KNApSAcK IDNot Available
Chemspider ID5889
KEGG Compound IDC00292
BioCyc ID34-DICHLOROANILINE
BiGG IDNot Available
Wikipedia LinkAniline
NuGOwiki LinkHMDB03012
Metagene LinkHMDB03012
METLIN ID489
PubChem Compound6115
PDB IDANL
ChEBI ID17296
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Bomhard EM, Herbold BA: Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit Rev Toxicol. 2005 Dec;35(10):783-835. [16468500 ]
  2. Nohynek GJ, Duche D, Garrigues A, Meunier PA, Toutain H, Leclaire J: Under the skin: Biotransformation of para-aminophenol and para-phenylenediamine in reconstructed human epidermis and human hepatocytes. Toxicol Lett. 2005 Sep 15;158(3):196-212. [15890478 ]
  3. Mathews JM, De Costa KS: Absorption, metabolism, and disposition of 1,3-diphenyl-1-triazene in rats and mice after oral, i.v., and dermal administration. Drug Metab Dispos. 1999 Dec;27(12):1499-504. [10570033 ]
  4. Weiss T, Angerer J: Simultaneous determination of various aromatic amines and metabolites of aromatic nitro compounds in urine for low level exposure using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Oct 5;778(1-2):179-92. [12376125 ]
  5. Hein DW, Doll MA, Xiao GH, Feng Y: Prostate expression of N-acetyltransferase 1 (NAT1) and 2 (NAT2) in rapid and slow acetylator congenic Syrian hamster. Pharmacogenetics. 2003 Mar;13(3):159-67. [12618593 ]
  6. Kuo HM, Ho HJ, Chao PD, Chung JG: Quercetin glucuronides inhibited 2-aminofluorene acetylation in human acute myeloid HL-60 leukemia cells. Phytomedicine. 2002 Oct;9(7):625-31. [12487326 ]
  7. Faraglia B, Chen SY, Gammon MD, Zhang Y, Teitelbaum SL, Neugut AI, Ahsan H, Garbowski GC, Hibshoosh H, Lin D, Kadlubar FF, Santella RM: Evaluation of 4-aminobiphenyl-DNA adducts in human breast cancer: the influence of tobacco smoke. Carcinogenesis. 2003 Apr;24(4):719-25. [12727801 ]
  8. Peluso M, Airoldi L, Magagnotti C, Fiorini L, Munnia A, Hautefeuille A, Malaveille C, Vineis P: White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer. Carcinogenesis. 2000 Feb;21(2):183-7. [10657956 ]
  9. el-Bayoumy K, Donahue JM, Hecht SS, Hoffmann D: Identification and quantitative determination of aniline and toluidines in human urine. Cancer Res. 1986 Dec;46(12 Pt 1):6064-7. [3779628 ]
  10. Iwersen-Bergmann S, Schmoldt A: Acute intoxication with aniline: detection of acetaminophen as aniline metabolite. Int J Legal Med. 2000;113(3):171-4. [10876991 ]
  11. Gan J, Skipper PL, Gago-Dominguez M, Arakawa K, Ross RK, Yu MC, Tannenbaum SR: Alkylaniline-hemoglobin adducts and risk of non-smoking-related bladder cancer. J Natl Cancer Inst. 2004 Oct 6;96(19):1425-31. [15467031 ]
  12. Stanley LA, Coroneos E, Cuff R, Hickman D, Ward A, Sim E: Immunochemical detection of arylamine N-acetyltransferase in normal and neoplastic bladder. J Histochem Cytochem. 1996 Sep;44(9):1059-67. [8773572 ]
  13. Vaziri SA, Hughes NC, Sampson H, Darlington G, Jewett MA, Grant DM: Variation in enzymes of arylamine procarcinogen biotransformation among bladder cancer patients and control subjects. Pharmacogenetics. 2001 Feb;11(1):7-20. [11207033 ]

Enzymes

General function:
Involved in acetyltransferase activity
Specific function:
Participates in the detoxification of a plethora of hydrazine and arylamine drugs. Catalyzes the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens.
Gene Name:
NAT1
Uniprot ID:
P18440
Molecular weight:
33898.445
General function:
Involved in acetyltransferase activity
Specific function:
Participates in the detoxification of a plethora of hydrazine and arylamine drugs. Catalyzes the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens.
Gene Name:
NAT2
Uniprot ID:
P11245
Molecular weight:
33570.245
General function:
Involved in hydrolase activity
Specific function:
Arylacetamide deacetylation is an important enzyme activity in the metabolic activation of arylamine substrates to ultimate carcinogens. Displays major serine hydrolase activity in liver microsomes. Hydrolyzes also flutamide, which is an antiandrogen drug used for the treatment of prostate cancer that occasionally causes severe hepatotoxicity. Displays cellular triglyceride lipase activity in liver. Increases intracellular fatty acids derived from hydrolysis of newly formed triglyceride stores.
Gene Name:
AADAC
Uniprot ID:
P22760
Molecular weight:
45733.28
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6T7
Molecular weight:
33570.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6T8
Molecular weight:
33572.3
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6T9
Molecular weight:
33542.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6U4
Molecular weight:
33542.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6U6
Molecular weight:
33574.3
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6U7
Molecular weight:
33528.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6U9
Molecular weight:
33530.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6V9
Molecular weight:
33542.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6Y1
Molecular weight:
33530.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6Y3
Molecular weight:
33600.3
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z6Y5
Molecular weight:
33570.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z737
Molecular weight:
33570.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z787
Molecular weight:
33514.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z7F6
Molecular weight:
33528.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z7H3
Molecular weight:
33543.1
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z7J7
Molecular weight:
33642.3
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z7K4
Molecular weight:
33528.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z7P9
Molecular weight:
33514.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z7V0
Molecular weight:
33516.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
A4Z867
Molecular weight:
33558.2
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT2
Uniprot ID:
Q400I7
Molecular weight:
16766.1
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT1
Uniprot ID:
Q400J6
Molecular weight:
10628.1
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT1
Uniprot ID:
Q6U7I7
Molecular weight:
31473.7
General function:
Involved in acetyltransferase activity
Specific function:
Not Available
Gene Name:
NAT1
Uniprot ID:
Q9HAQ5
Molecular weight:
33882.4