You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected but not Quantified
Creation Date2006-08-12 23:21:59 UTC
Update Date2017-12-20 20:30:23 UTC
HMDB IDHMDB0003538
Secondary Accession Numbers
  • HMDB03538
Metabolite Identification
Common NameCarbonic acid
DescriptionCarbonic acid (ancient name acid of air or aerial acid) is the only inorganic carbon acid, and has the formula H2CO3. It is also a name sometimes given to solutions of carbon dioxide in water, which contain small amounts of H2CO3. The salts of carbonic acids are called bicarbonates (or hydrogencarbonates) and carbonates. (wikipedia).
Structure
Thumb
Synonyms
ValueSource
[co(OH)2]ChEBI
Dihydrogen carbonateChEBI
H2CO3ChEBI
KoehlensaeureChEBI
CarbonateGenerator
Dihydrogen carbonic acidGenerator
Acid OF airHMDB
Aerial acidHMDB
Bisodium carbonateHMDB
CalcinedHMDB
Carbonic acid sodium saltHMDB
ConsalHMDB
Crystol carbonateHMDB
Disodium carbonateHMDB
Mild alkaliHMDB
Na-XHMDB
OxyperHMDB
Sal sodaHMDB
Salt OF sodaHMDB
Scotch sodaHMDB
SodaHMDB
Soda ashHMDB
Sodium carbonateHMDB
Sodium carbonate anhydrousHMDB
Sodium carbonate hydratedHMDB
Sodium carbonate peroxyhydrateHMDB
Solvay sodaHMDB
Trona soda ashHMDB
Tronalight light soda ashHMDB
Acid, carbonicMeSH
Chemical FormulaCH2O3
Average Molecular Weight62.0248
Monoisotopic Molecular Weight62.00039393
IUPAC Namecarbonic acid
Traditional Namecarbonic acid
CAS Registry Number463-79-6
SMILES
OC(O)=O
InChI Identifier
InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4)
InChI KeyBVKZGUZCCUSVTD-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as organic carbonic acids. These are compounds comprising the carbonic acid functional group.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassOrganic carbonic acids and derivatives
Sub ClassOrganic carbonic acids
Direct ParentOrganic carbonic acids
Alternative Parents
Substituents
  • Carbonic acid
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility231 g/LALOGPS
logP0.6ALOGPS
logP0.25ChemAxon
logS0.57ALOGPS
pKa (Strongest Acidic)6.05ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity9.5 m³·mol⁻¹ChemAxon
Polarizability4.23 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-03di-9000000000-310dbbc64fba7d9c667eView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-00du-9300000000-b9ab1da5629a3dfff55fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-9000000000-53429210d3161a8e792fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03di-9000000000-65bbb10c2768f3746b62View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-03di-9000000000-b6afca3e3ac002546879View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-9000000000-0ef3797aeb5276c64c90View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03di-9000000000-5b50453541e6f14e35beView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-03di-9000000000-5b50453541e6f14e35beView in MoNA
Biological Properties
Cellular Locations
  • Mitochondria
Biospecimen Locations
  • Saliva
Tissue Location
  • Bladder
  • Epidermis
  • Intestine
  • Kidney
  • Nerve Cells
  • Pancreas
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Testes
  • Thyroid Gland
Pathways
NameSMPDB/PathwhizKEGG
2-Hydroxyglutric Aciduria (D And L Form)ThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase DeficiencyThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
Glutamate MetabolismThumbThumb?image type=greyscaleThumb?image type=simpleMap00250
HomocarnosinosisThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
Hyperinsulinism-Hyperammonemia SyndromeThumbThumb?image type=greyscaleThumb?image type=simpleNot Available
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
SalivaDetected but not Quantified Adult (>18 years old)Not SpecifiedNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB023191
KNApSAcK IDNot Available
Chemspider ID747
KEGG Compound IDC01353
BioCyc IDCARBON-DIOXIDE
BiGG ID1436647
Wikipedia LinkCarbonic acid
METLIN ID6944
PubChem Compound767
PDB IDNot Available
ChEBI ID28976
References
Synthesis ReferenceGovdyak, R. M. Liquid carbonic acid production at gas industry facilities. Ekotekhnologii i Resursosberezhenie (2005), (3), 41-48.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Gross E, Fedotoff O, Pushkin A, Abuladze N, Newman D, Kurtz I: Phosphorylation-induced modulation of pNBC1 function: distinct roles for the amino- and carboxy-termini. J Physiol. 2003 Jun 15;549(Pt 3):673-82. Epub 2003 May 2. [PubMed:12730338 ]
  2. Kristensen JM, Kristensen M, Juel C: Expression of Na+/HCO3- co-transporter proteins (NBCs) in rat and human skeletal muscle. Acta Physiol Scand. 2004 Sep;182(1):69-76. [PubMed:15329059 ]
  3. Severina IS, Pyatakova NV, Shchegolev AY, Ponomarev GV: YC-1-like potentiation of NO-dependent activation of soluble guanylate cyclase by derivatives of protoporphyrin IX. Biochemistry (Mosc). 2006 Mar;71(3):340-4. [PubMed:16545073 ]
  4. Bomhard EM, Brendler-Schwaab SY, Freyberger A, Herbold BA, Leser KH, Richter M: O-phenylphenol and its sodium and potassium salts: a toxicological assessment. Crit Rev Toxicol. 2002;32(6):551-625. [PubMed:12487365 ]
  5. Sepai O, Anderson D, Street B, Bird I, Farmer PB, Bailey E: Monitoring of exposure to styrene oxide by GC-MS analysis of phenylhydroxyethyl esters in hemoglobin. Arch Toxicol. 1993;67(1):28-33. [PubMed:8452476 ]
  6. DiGiovanna JJ, Aoyagi T, Taylor JR, Halprin KM: Inhibition of epidermal adenyl cyclase by lithium carbonate. J Invest Dermatol. 1981 Apr;76(4):259-63. [PubMed:6259263 ]
  7. Thakur SC, Thakur SS, Chaube SK, Singh SP: Subchronic supplementation of lithium carbonate induces reproductive system toxicity in male rat. Reprod Toxicol. 2003 Nov-Dec;17(6):683-90. [PubMed:14613820 ]
  8. Faravelli C, Di Bernardo M, Ricca V, Benvenuti P, Bartelli M, Ronchi O: Effects of chronic lithium treatment on the peripheral nervous system. J Clin Psychiatry. 1999 May;60(5):306-10. [PubMed:10362438 ]
  9. Siegel L, Walker SI, Robin NI: Total hydrolyzable glycerol in amniotic fluid, and its relationship to fetal lung maturity. Clin Chem. 1984 Sep;30(9):1546-8. [PubMed:6467568 ]
  10. Bartsch I, Zschaler I, Haseloff M, Steinberg P: Establishment of a long-term culture system for rat colon epithelial cells. In Vitro Cell Dev Biol Anim. 2004 Sep-Oct;40(8-9):278-84. [PubMed:15723563 ]
  11. Matousek P, Novotny J, Rudajev V, Svoboda P: Prolonged agonist stimulation does not alter the protein composition of membrane domains in spite of dramatic changes induced in a specific signaling cascade. Cell Biochem Biophys. 2005;42(1):21-40. [PubMed:15673926 ]
  12. Xu W, Yoon SI, Huang P, Wang Y, Chen C, Chong PL, Liu-Chen LY: Localization of the kappa opioid receptor in lipid rafts. J Pharmacol Exp Ther. 2006 Jun;317(3):1295-306. Epub 2006 Feb 27. [PubMed:16505160 ]
  13. Perrild H, Hegedus L, Arnung K: Sex related goitrogenic effect of lithium carbonate in healthy young subjects. Acta Endocrinol (Copenh). 1984 Jun;106(2):203-8. [PubMed:6428121 ]
  14. Sack DA, Sack RB, Nair GB, Siddique AK: Cholera. Lancet. 2004 Jan 17;363(9404):223-33. [PubMed:14738797 ]
  15. Loiselle FB, Jaschke P, Casey JR: Structural and functional characterization of the human NBC3 sodium/bicarbonate co-transporter carboxyl-terminal cytoplasmic domain. Mol Membr Biol. 2003 Oct-Dec;20(4):307-17. [PubMed:14578046 ]
  16. Antonijevic N, Terzic T, Jovanovic V, Suvajdzic N, Milosevic R, Basara N, Elezovic I: [Acquired amegakaryocytic thrombocytopenia: three case reports and a literature review]. Med Pregl. 2004 May-Jun;57(5-6):292-7. [PubMed:15503803 ]
  17. Chang TC: Influence of lithium carbonate on the thyrotropin receptor in vitro. Taiwan Yi Xue Hui Za Zhi. 1989 Jan;88(1):13-7. [PubMed:2547015 ]

Only showing the first 10 proteins. There are 22 proteins in total.

Enzymes

General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
ACC-beta may be involved in the provision of malonyl-CoA or in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase.
Gene Name:
ACACB
Uniprot ID:
O00763
Molecular weight:
276538.575
Reactions
Adenosine triphosphate + Acetyl-CoA + Carbonic acid → ADP + Phosphoric acid + Malonyl-CoAdetails
Adenosine triphosphate + Holo-[carboxylase] + Carbonic acid → ADP + Phosphoric acid + Carboxybiotin-carboxyl-carrier proteindetails
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate.
Gene Name:
PC
Uniprot ID:
P11498
Molecular weight:
129632.565
Reactions
Adenosine triphosphate + Pyruvic acid + Carbonic acid → ADP + Phosphoric acid + Oxalacetic aciddetails
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Catalyzes the rate-limiting reaction in the biogenesis of long-chain fatty acids. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase.
Gene Name:
ACACA
Uniprot ID:
Q13085
Molecular weight:
269997.01
Reactions
Adenosine triphosphate + Acetyl-CoA + Carbonic acid → ADP + Phosphoric acid + Malonyl-CoAdetails
Adenosine triphosphate + Holo-[carboxylase] + Carbonic acid → ADP + Phosphoric acid + Carboxybiotin-carboxyl-carrier proteindetails
General function:
Involved in oxidoreductase activity
Specific function:
Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA.
Gene Name:
ALDH6A1
Uniprot ID:
Q02252
Molecular weight:
57839.31
Reactions
2-Methyl-3-oxopropanoic acid + Coenzyme A + Water + NAD → Propionyl-CoA + Carbonic acid + NADHdetails
General function:
Involved in ligase activity
Specific function:
Not Available
Gene Name:
PCCB
Uniprot ID:
P05166
Molecular weight:
58215.13
Reactions
Adenosine triphosphate + Propionyl-CoA + Carbonic acid → ADP + Phosphoric acid + S-Methylmalonyl-CoAdetails
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
PCCA
Uniprot ID:
P05165
Molecular weight:
80058.295
Reactions
Adenosine triphosphate + Propionyl-CoA + Carbonic acid → ADP + Phosphoric acid + S-Methylmalonyl-CoAdetails
General function:
Involved in ligase activity
Specific function:
Not Available
Gene Name:
MCCC2
Uniprot ID:
Q9HCC0
Molecular weight:
61332.65
Reactions
Adenosine triphosphate + 3-Methylcrotonyl-CoA + Carbonic acid → ADP + Phosphoric acid + 3-Methylglutaconyl-CoAdetails
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
MCCC1
Uniprot ID:
Q96RQ3
Molecular weight:
80472.45
Reactions
Adenosine triphosphate + 3-Methylcrotonyl-CoA + Carbonic acid → ADP + Phosphoric acid + 3-Methylglutaconyl-CoAdetails
General function:
Involved in carbonate dehydratase activity
Specific function:
Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
Gene Name:
CA1
Uniprot ID:
P00915
Molecular weight:
28870.0
Reactions
Carbonic acid → CO(2) + Waterdetails
Carbonic acid → Carbon dioxide + Waterdetails
General function:
Involved in carbonate dehydratase activity
Specific function:
Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.
Gene Name:
CA2
Uniprot ID:
P00918
Molecular weight:
29245.895
Reactions
Carbonic acid → CO(2) + Waterdetails
Carbonic acid → Carbon dioxide + Waterdetails

Only showing the first 10 proteins. There are 22 proteins in total.