You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-08-13 02:31:31 UTC
Update Date2016-02-11 01:06:24 UTC
HMDB IDHMDB03648
Secondary Accession NumbersNone
Metabolite Identification
Common NameRetinyl palmitate
DescriptionRetinyl palmitate, or vitamin A palmitate, is a common vitamin supplement, with formula C36H60O2. It is available in both oral and injectable forms for treatment of vitamin A deficiency, under the brand names Aquasol and Palmitate. Retinyl palmitate is an alternate for retinyl acetate in vitamin A supplements, and is available in oily or dry forms. It is a pre-formed version of vitamin A, and can thus be realistically over-dosed, unlike beta-carotene.
Structure
Thumb
Synonyms
ValueSource
all-trans-Retinyl hexadecanoateChEBI
Retinol palmitateChEBI
Retinyl palmitateChEBI
Vitamin a palmitateChEBI
all-trans-Retinyl hexadecanoic acidGenerator
all-trans-Retinyl palmitic acidGenerator
Retinol palmitic acidGenerator
Retinyl palmitic acidGenerator
Vitamin a palmitic acidGenerator
all-trans-Retinol palmitateHMDB
all-trans-Vitamin a palmitateHMDB
AquapalmHMDB
Aquasol aHMDB
ArovitHMDB
Axerophthol palmitateHMDB
Dispatabs tabsHMDB
Ester found in fish liver oilsHMDB
Lutavit a 500 plusHMDB
MyvakHMDB
MyvaxHMDB
Optovit aHMDB
Optovit-aHMDB
Retinyl hexadecanoateHMDB
Retinyl hexadecanoic acidHMDB
Testavol SHMDB
trans-Retinol palmitateHMDB
trans-Retinyl palmitateHMDB
Vitazyme aHMDB
Chemical FormulaC36H60O2
Average Molecular Weight524.8604
Monoisotopic Molecular Weight524.459331164
IUPAC Name(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-yl hexadecanoate
Traditional Namevitamin a palmitate
CAS Registry Number79-81-2
SMILES
CCCCCCCCCCCCCCCC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C
InChI Identifier
InChI=1S/C36H60O2/c1-7-8-9-10-11-12-13-14-15-16-17-18-19-25-35(37)38-30-28-32(3)23-20-22-31(2)26-27-34-33(4)24-21-29-36(34,5)6/h20,22-23,26-28H,7-19,21,24-25,29-30H2,1-6H3/b23-20+,27-26+,31-22+,32-28+
InChI KeyInChIKey=VYGQUTWHTHXGQB-FFHKNEKCSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as wax monoesters. These are waxes bearing an ester group at exactly one position.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentWax monoesters
Alternative Parents
Substituents
  • Wax monoester skeleton
  • Retinoid skeleton
  • Diterpenoid
  • Fatty alcohol ester
  • Carboxylic acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane (predicted from logP)
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point28.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility8.07e-05 mg/mLALOGPS
logP10.12ALOGPS
logP11.62ChemAxon
logS-6.8ALOGPS
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area26.3 Å2ChemAxon
Rotatable Bond Count21ChemAxon
Refractivity171.51 m3·mol-1ChemAxon
Polarizability70.5 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
Biofluid Locations
  • Blood
Tissue Location
  • Adipose Tissue
  • Chylomicrons
  • Epidermis
  • Fibroblasts
  • Intestine
  • Placenta
Pathways
NameSMPDB LinkKEGG Link
Retinol MetabolismSMP00074map00830
Vitamin A DeficiencySMP00336Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.0071 +/- 0.0048 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB013831
KNApSAcK IDNot Available
Chemspider ID4444162
KEGG Compound IDC02588
BioCyc IDCPD-523
BiGG ID2264863
Wikipedia LinkRetinyl palmitate
NuGOwiki LinkHMDB03648
Metagene LinkHMDB03648
METLIN ID6970
PubChem Compound5280531
PDB IDNot Available
ChEBI ID17616
References
Synthesis ReferenceAjima, Ayako; Takahashi, Katsunobu; Matsushima, Ayako; Saito, Yuji; Inada, Yuji. Retinyl esters synthesis by polyethylene glycol-modified lipase in benzene. Biotechnology Letters (1986), 8(8), 547-52.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Gylling H, Relas H, Miettinen HE, Radhakrishnan R, Miettinen TA: Delayed postprandial retinyl palmitate and squalene removal in a patient heterozygous for apolipoprotein A-IFIN mutation (Leu 159-->Arg) and low HDL cholesterol level without coronary artery disease. Atherosclerosis. 1996 Dec 20;127(2):239-43. [9125314 ]
  2. Relas H, Gylling H, Miettinen TA: Effect of stanol ester on postabsorptive squalene and retinyl palmitate. Metabolism. 2000 Apr;49(4):473-8. [10778871 ]
  3. Antille C, Tran C, Sorg O, Carraux P, Didierjean L, Saurat JH: Vitamin A exerts a photoprotective action in skin by absorbing ultraviolet B radiation. J Invest Dermatol. 2003 Nov;121(5):1163-7. [14708621 ]
  4. Epler KS, Ziegler RG, Craft NE: Liquid chromatographic method for the determination of carotenoids, retinoids and tocopherols in human serum and in food. J Chromatogr. 1993 Sep 8;619(1):37-48. [8245162 ]
  5. Ribaya-Mercado JD, Blanco MC, Fox JG, Russell RM: High concentrations of vitamin A esters circulate primarily as retinyl stearate and are stored primarily as retinyl palmitate in ferret tissues. J Am Coll Nutr. 1994 Feb;13(1):83-6. [8157860 ]
  6. Thomas JB, Kline MC, Schiller SB, Ellerbe PM, Sniegoski LT, Duewer DL, Sharpless KE: Certification of fat-soluble vitamins, carotenoids, and cholesterol in human serum: Standard Reference Material 968b. Anal Bioanal Chem. 1996 Aug;356(1):1-9. [15045249 ]
  7. Fernandez-Miranda C, Cancelas P, Sanz M, Porres A, Gamez Gerique J: Influence of apolipoprotein-E phenotypes on postprandial lipoprotein metabolism after three different fat loads. Nutrition. 2001 Jul-Aug;17(7-8):529-33. [11448569 ]
  8. Weintraub M, Grosskopf I, Trostanesky Y, Charach G, Rubinstein A, Stern N: Thyroxine replacement therapy enhances clearance of chylomicron remnants in patients with hypothyroidism. J Clin Endocrinol Metab. 1999 Jul;84(7):2532-6. [10404832 ]
  9. Lindstrom MB, Sternby B, Borgstrom B: Concerted action of human carboxyl ester lipase and pancreatic lipase during lipid digestion in vitro: importance of the physicochemical state of the substrate. Biochim Biophys Acta. 1988 Mar 25;959(2):178-84. [3349096 ]
  10. Gimeno A, Zaragoza R, Vivo-Sese I, Vina JR, Miralles VJ: Retinol, at concentrations greater than the physiological limit, induces oxidative stress and apoptosis in human dermal fibroblasts. Exp Dermatol. 2004 Jan;13(1):45-54. [15009115 ]
  11. Kobayashi TK, Tsubota K, Takamura E, Sawa M, Ohashi Y, Usui M: Effect of retinol palmitate as a treatment for dry eye: a cytological evaluation. Ophthalmologica. 1997;211(6):358-61. [9380354 ]
  12. Foger B, Drexel H, Hopferwieser T, Miesenbock G, Ritsch A, Lechleitner M, Trobinger G, Patsch JR: Fenofibrate improves postprandial chylomicron clearance in II B hyperlipoproteinemia. Clin Investig. 1994 Mar;72(4):294-301. [8043977 ]
  13. Van Lieshout M, West CE, Van De Bovenkamp P, Wang Y, Sun Y, Van Breemen RB, Muhilal DP, Verhoeven MA, Creemers AF, Lugtenburg J: Extraction of carotenoids from feces, enabling the bioavailability of beta-carotene to be studied in Indonesian children. J Agric Food Chem. 2003 Aug 13;51(17):5123-30. [12903979 ]
  14. Zampelas A, Ah-Sing E, Chakraboraty J, Murphy M, Peel A, Wright J, Williams CM: The use of retinyl palmitate to measure clearance of chylomicrons and chylomicron remnants following meals of different fatty acid compositions. Biochem Soc Trans. 1993 May;21(2):137S. [8359391 ]
  15. Hartmann S, Froescheis O, Ringenbach F, Wyss R, Bucheli F, Bischof S, Bausch J, Wiegand UW: Determination of retinol and retinyl esters in human plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection. J Chromatogr B Biomed Sci Appl. 2001 Feb 25;751(2):265-75. [11236082 ]
  16. Tzimas G, Collins MD, Burgin H, Hummler H, Nau H: Embryotoxic doses of vitamin A to rabbits result in low plasma but high embryonic concentrations of all-trans-retinoic acid: risk of vitamin A exposure in humans. J Nutr. 1996 Sep;126(9):2159-71. [8814204 ]
  17. Guerci B, Paul JL, Hadjadj S, Durlach V, Verges B, Attia N, Girard-Globa A, Drouin P: Analysis of the postprandial lipid metabolism: use of a 3-point test. Diabetes Metab. 2001 Sep;27(4 Pt 1):449-57. [11547218 ]
  18. de Bruin TW, Brouwer CB, van Linde-Sibenius Trip M, Jansen H, Erkelens DW: Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil. Am J Clin Nutr. 1993 Oct;58(4):477-83. [8379502 ]
  19. Martins IJ, Hopkins L, Joll CA, Redgrave TG: Interactions between model triacylglycerol-rich lipoproteins and high-density lipoproteins in rat, rabbit and man. Biochim Biophys Acta. 1991 Feb 5;1081(3):328-38. [1998751 ]
  20. Schindler R, Klopp A: Transport of esterified retinol in fasting human blood. Int J Vitam Nutr Res. 1986;56(1):21-7. [3710714 ]

Enzymes

General function:
Involved in diacylglycerol O-acyltransferase activity
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders.
Gene Name:
DGAT1
Uniprot ID:
O75907
Molecular weight:
55277.735
Reactions
hexadecanoyl-CoA + Vitamin A → Coenzyme A + Retinyl palmitatedetails
General function:
Involved in phosphatidylcholine-retinol O-acyltransfera
Specific function:
Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters. Retinyl esters are storage forms of vitamin A. LRAT plays a critical role in vision. It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis-retinaldehyde which is the chromophore for rhodopsin and the cone photopigments.
Gene Name:
LRAT
Uniprot ID:
O95237
Molecular weight:
25702.635
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Acyltransferase that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. Wax esters are enriched in sebum, suggesting that it plays a central role in lipid metabolism in skin. Has a preference for arachidyl alcohol as well as decyl alcohol, demonstrating its relatively poor activity using saturated long chain alcohols (C16, C18, and C20).
Gene Name:
AWAT1
Uniprot ID:
Q58HT5
Molecular weight:
37758.815
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Acyltransferase that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. Wax esters are enriched in sebum, suggesting that it plays a central role in lipid metabolism in skin. Has no activity using decyl alcohol and significantly prefers the C16 and C18 alcohols. May also have 2-acylglycerol O-acyltransferase (MGAT) and acyl-CoA:retinol acyltransferase (ARAT) activities, to catalyze the synthesis of diacylglycerols and retinyl esters; however this activity is unclear in vivo.
Gene Name:
AWAT2
Uniprot ID:
Q6E213
Molecular weight:
38093.25
Reactions
hexadecanoyl-CoA + Vitamin A → Coenzyme A + Retinyl palmitatedetails