You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-08-13 16:50:24 UTC
Update Date2014-10-28 22:59:10 UTC
HMDB IDHMDB04327
Secondary Accession NumbersNone
Metabolite Identification
Common Name1-Butanol
Description1-Butanol, which is also known as n-butanol or 1-butanol or butyl alcohol (sometimes also called biobutanol when produced biologically), is an alcohol with a 4 carbon structure and the molecular formula of C4H10O. It is primarily used as a solvent, as an intermediate in chemical synthesis, and as a fuel. There are four isomeric structures for butanol. The straight chain isomer with the alcohol at an internal carbon is sec-butanol or 2-butanol. The branched isomer with the alcohol at a terminal carbon is isobutanol, and the branched isomer with the alcohol at the internal carbon is tert-butanol. 1-Butanol is produced in small amounts by gut microbial fermenetation through the butanoate metabolic pathway.
Structure
Thumb
Synonyms
  1. 1-Butanol
  2. 1-Butyl alcohol
  3. Butanol
  4. Butyl alcohol
  5. Butyl hydroxide
  6. Hemostyp
  7. Methylolpropane
  8. N-Butanol
  9. N-Butyl alcohol
  10. Propylcarbinol
Chemical FormulaC4H10O
Average Molecular Weight74.1216
Monoisotopic Molecular Weight74.073164942
IUPAC Namebutan-1-ol
Traditional Namebutan-1-ol
CAS Registry Number71-36-3
SMILES
CCCCO
InChI Identifier
InChI=1S/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3
InChI KeyLRHPLDYGYMQRHN-UHFFFAOYSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAliphatic Acyclic Compounds
ClassAlcohols and Polyols
Sub ClassPrimary Alcohols
Other Descriptors
  • Aliphatic Acyclic Compounds
  • Fatty alcohols(Lipidmaps)
  • a primary alcohol(Cyc)
  • alkyl alcohol(ChEBI)
  • primary alcohol(ChEBI)
Substituents
  • N/A
Direct ParentPrimary Alcohols
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Microbial
BiofunctionNot Available
ApplicationNot Available
Cellular locationsNot Available
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-89.8 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility63.2 mg/mL at 25 °CNot Available
LogP0.88HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility158 g/LALOGPS
logP0.84ALOGPS
logP0.81ChemAxon
logS0.33ALOGPS
pKa (Strongest Acidic)16.95ChemAxon
pKa (Strongest Basic)-1.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity22.13ChemAxon
Polarizability9.21ChemAxon
Spectra
SpectraMS/MS1D NMR2D NMR
Biological Properties
Cellular LocationsNot Available
Biofluid Locations
  • Blood
  • Saliva
Tissue Location
  • Epidermis
  • Fibroblasts
  • Kidney
  • Liver
  • Pancreas
  • Spleen
  • Stratum Corneum
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.08 (0.00 - 0.27) uMAdult (>18 years old)BothNormal details
SalivaDetected but not QuantifiedNot ApplicableAdult (>18 years old)Not SpecifiedNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.11 (0 - 2.43) uMAdult (>18 years old)BothDiabetes details
Associated Disorders and Diseases
Disease References
Diabetes mellitus type 2
  1. Liebich HM, Buelow HJ, Kallmayer R: Quantification of endogenous aliphatic alcohols in serum and urine. J Chromatogr. 1982 Apr 30;239:343-9. Pubmed: 7096503
Associated OMIM IDs
DrugBank IDDB02145
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB012614
KNApSAcK IDC00035814
Chemspider ID258
KEGG Compound IDC06142
BioCyc IDBUTANOL
BiGG IDNot Available
Wikipedia Link1-Butanol
NuGOwiki LinkHMDB04327
Metagene LinkHMDB04327
METLIN ID7052
PubChem Compound263
PDB ID1BO
ChEBI ID28885
References
Synthesis ReferenceTsuchida, Takashi; Sakuma, Shuji. Ethanol to 1-butanol on hydroxyapatite. Shokubai (2007), 49(3), 238-243.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Okamoto M, Kaji R, Kasetani H, Yoshida H, Moriya Y, Saito M, Sato M: Purification and characterization of interferon-gamma-inducing molecule of OK-432, a penicillin-killed streptococcal preparation, by monoclonal antibody neutralizing interferon-gamma-inducing activity of OK-432. J Immunother. 1993 May 4;13(4):232-42. Pubmed: 8334107
  2. Copovi A, Diez-Sales O, Herraez-Dominguez JV, Herraez-Dominguez M: Enhancing effect of alpha-hydroxyacids on "in vitro" permeation across the human skin of compounds with different lipophilicity. Int J Pharm. 2006 May 11;314(1):31-6. Epub 2006 Mar 20. Pubmed: 16545927
  3. Bailyes EM, Seabrook RN, Calvin J, Maguire GA, Price CP, Siddle K, Luzio JP: The preparation of monoclonal antibodies to human bone and liver alkaline phosphatase and their use in immunoaffinity purification and in studying these enzymes when present in serum. Biochem J. 1987 Jun 15;244(3):725-33. Pubmed: 2451502
  4. Gainer AL, Stinson RA: Evidence that alkaline phosphatase from human neutrophils is the same gene product as the liver/kidney/bone isoenzyme. Clin Chim Acta. 1982 Aug 4;123(1-2):11-7. Pubmed: 7116633
  5. Yamamoto K, Takahashi Y, Mano T, Sakata Y, Nishikawa N, Yoshida J, Oishi Y, Hori M, Miwa T, Inoue S, Masuyama T: N-methylethanolamine attenuates cardiac fibrosis and improves diastolic function: inhibition of phospholipase D as a possible mechanism. Eur Heart J. 2004 Jul;25(14):1221-9. Pubmed: 15246640
  6. Seiffert UB, Siede WH, Welsch GJ, Oremek G: Multiple forms of alkaline phosphatases in human liver tissue. Clin Chim Acta. 1984 Dec 15;144(1):17-27. Pubmed: 6210164
  7. Chen M: Amended final report of the safety assessment of t-Butyl Alcohol as used in cosmetics. Int J Toxicol. 2005;24 Suppl 2:1-20. Pubmed: 16154913
  8. Chang CH, Angellis D: Identification of a butanol-extractable human placenta-specific antigen with alkaline phosphatase activity. J Immunol. 1976 Jul;117(1):91-6. Pubmed: 58937
  9. Oakley DM, Swarbrick J: Effects of ionization on the percutaneous absorption of drugs: partitioning of nicotine into organic liquids and hydrated stratum corneum. J Pharm Sci. 1987 Dec;76(12):866-71. Pubmed: 3440928
  10. Waddell WJ, Marlowe C: Inhibition by alcohols of the localization of radioactive nitrosonornicotine in sites of tumor formation. Science. 1983 Jul 1;221(4605):51-3. Pubmed: 6857261
  11. Bieler CA, Cornelius MG, Klein R, Arlt VM, Wiessler M, Phillips DH, Schmeiser HH: DNA adduct formation by the environmental contaminant 3-nitrobenzanthrone after intratracheal instillation in rats. Int J Cancer. 2005 Oct 10;116(6):833-8. Pubmed: 15856450
  12. Wulkan RW, Huijskes-Heins MI, Leijnse B: Hydrophobic properties of alkaline phosphatases. Int J Biochem. 1986;18(11):1045-51. Pubmed: 3803695
  13. Kalimanovska V, Whitaker KB, Moss DW: Effect of bromelain on alkaline phosphatases of intestinal and non-intestinal tissues and serum. Clin Chim Acta. 1987 Dec;170(2-3):219-25. Pubmed: 3436056
  14. Basu A, Glew RH: Characterization of the activation of rat liver beta-glucosidase by sialosylgangliotetraosylceramide. J Biol Chem. 1985 Oct 25;260(24):13067-73. Pubmed: 3932339
  15. Arlt VM, Sorg BL, Osborne M, Hewer A, Seidel A, Schmeiser HH, Phillips DH: DNA adduct formation by the ubiquitous environmental pollutant 3-nitrobenzanthrone and its metabolites in rats. Biochem Biophys Res Commun. 2003 Jan 3;300(1):107-14. Pubmed: 12480528

Enzymes

General function:
Involved in arylesterase activity
Specific function:
Has low activity towards the organophosphate paraxon and aromatic carboxylic acid esters. Rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). Hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents.
Gene Name:
PON3
Uniprot ID:
Q15166
Molecular weight:
39607.185
General function:
Involved in arylesterase activity
Specific function:
Hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. Capable of hydrolyzing a broad spectrum of organophosphate substrates and lactones, and a number of aromatic carboxylic acid esters. Mediates an enzymatic protection of low density lipoproteins against oxidative modification and the consequent series of events leading to atheroma formation.
Gene Name:
PON1
Uniprot ID:
P27169
Molecular weight:
39730.99
General function:
Involved in arylesterase activity
Specific function:
Capable of hydrolyzing lactones and a number of aromatic carboxylic acid esters. Has antioxidant activity. Is not associated with high density lipoprotein. Prevents LDL lipid peroxidation, reverses the oxidation of mildly oxidized LDL, and inhibits the ability of MM-LDL to induce monocyte chemotaxis.
Gene Name:
PON2
Uniprot ID:
Q15165
Molecular weight:
39380.535
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
ALPI
Uniprot ID:
P09923
Molecular weight:
56811.695
General function:
Involved in acid phosphatase activity
Specific function:
Not Available
Gene Name:
ACP2
Uniprot ID:
P11117
Molecular weight:
48343.92
General function:
Involved in catalytic activity
Specific function:
This isozyme may play a role in skeletal mineralization.
Gene Name:
ALPL
Uniprot ID:
P05186
Molecular weight:
57304.435
General function:
Involved in hydrolase activity
Specific function:
Involved in osteopontin/bone sialoprotein dephosphorylation. Its expression seems to increase in certain pathological states such as Gaucher and Hodgkin diseases, the hairy cell, the B-cell, and the T-cell leukemias.
Gene Name:
ACP5
Uniprot ID:
P13686
Molecular weight:
36598.47
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
ALPPL2
Uniprot ID:
P10696
Molecular weight:
57376.515
General function:
Involved in oxidoreductase activity
Specific function:
ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation.
Gene Name:
ALDH1B1
Uniprot ID:
P30837
Molecular weight:
57248.96
General function:
Involved in sulfotransferase activity
Specific function:
Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs and xenobiotic compounds. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Sulfates hydroxysteroids like DHEA. Isoform 1 preferentially sulfonates cholesterol, and isoform 2 avidly sulfonates pregnenolone but not cholesterol.
Gene Name:
SULT2B1
Uniprot ID:
O00204
Molecular weight:
39598.595
General function:
Involved in zinc ion binding
Specific function:
Converts sorbitol to fructose. Part of the polyol pathway that plays an important role in sperm physiology. May play a role in the sperm motility by providing an energetic source for sperm (By similarity).
Gene Name:
SORD
Uniprot ID:
Q00796
Molecular weight:
38324.25
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols. Catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Has broad substrate specificity. In vitro substrates include succinic semialdehyde, 4-nitrobenzaldehyde, 1,2-naphthoquinone, methylglyoxal, and D-glucuronic acid. Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN).
Gene Name:
AKR1A1
Uniprot ID:
P14550
Molecular weight:
36572.71
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH4
Uniprot ID:
P08319
Molecular weight:
40221.335
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH1B
Uniprot ID:
P00325
Molecular weight:
39835.17
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH1A
Uniprot ID:
P07327
Molecular weight:
39858.37
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH6
Uniprot ID:
P28332
Molecular weight:
39072.275
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
Plays an important role in the degradation of dermatan and keratan sulfates.
Gene Name:
GUSB
Uniprot ID:
P08236
Molecular weight:
74731.46
General function:
Involved in alpha-L-fucosidase activity
Specific function:
Alpha-L-fucosidase is responsible for hydrolyzing the alpha-1,6-linked fucose joined to the reducing-end N-acetylglucosamine of the carbohydrate moieties of glycoproteins.
Gene Name:
FUCA2
Uniprot ID:
Q9BTY2
Molecular weight:
54066.31
General function:
Involved in zinc ion binding
Specific function:
Catalyzes the reduction of trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. May have a role in the mitochondrial synthesis of fatty acids.
Gene Name:
MECR
Uniprot ID:
Q9BV79
Molecular weight:
32228.0
General function:
Involved in phosphatidylcholine-retinol O-acyltransfera
Specific function:
Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters. Retinyl esters are storage forms of vitamin A. LRAT plays a critical role in vision. It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis-retinaldehyde which is the chromophore for rhodopsin and the cone photopigments.
Gene Name:
LRAT
Uniprot ID:
O95237
Molecular weight:
25702.635
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element
Gene Name:
NR1I3
Uniprot ID:
Q14994
Molecular weight:
39942.1
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ZADH2
Uniprot ID:
Q8N4Q0
Molecular weight:
40140.1
General function:
Involved in oxidoreductase activity
Specific function:
Does not exhibit retinol dehydrogenase (RDH) activity in vitro
Gene Name:
RDH13
Uniprot ID:
Q8NBN7
Molecular weight:
35931.8
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the cofactor-independent reversible oxidation of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG). D,L-3-hydroxyisobutyrate and L-3-hydroxybutyrate (L-3-OHB) are also substrates for HOT with 10-fold lower activities.
Gene Name:
ADHFE1
Uniprot ID:
Q8IWW8
Molecular weight:
50307.42
General function:
Involved in catalytic activity
Specific function:
Catalyzes the reduction of fatty acyl-CoA to fatty alcohols. The preferred substrates are C16, C18, C18:1 and C18:2 but low activity can be observed with C10-C14 substrates.
Gene Name:
FAR2
Uniprot ID:
Q96K12
Molecular weight:
59437.92
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Acyltransferase that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. Wax esters are enriched in sebum, suggesting that it plays a central role in lipid metabolism in skin. Has no activity using decyl alcohol and significantly prefers the C16 and C18 alcohols. May also have 2-acylglycerol O-acyltransferase (MGAT) and acyl-CoA:retinol acyltransferase (ARAT) activities, to catalyze the synthesis of diacylglycerols and retinyl esters; however this activity is unclear in vivo.
Gene Name:
AWAT2
Uniprot ID:
Q6E213
Molecular weight:
38093.25
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity). The Klotho peptide generated by cleavage of the membrane-bound isoform may be an anti-aging circulating hormone which would extend life span by inhibiting insulin/IGF1 signaling (By similarity).
Gene Name:
KL
Uniprot ID:
Q9UEF7
Molecular weight:
116179.815
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates receptor tyrosine-protein kinase erbB-4 and inhibits the ligand-induced proteolytic cleavage.
Gene Name:
ACPT
Uniprot ID:
Q9BZG2
Molecular weight:
46089.015
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs (By similarity).
Gene Name:
CES5A
Uniprot ID:
Q6NT32
Molecular weight:
63925.82
General function:
Involved in acid phosphatase activity
Specific function:
Not Available
Gene Name:
ACPL2
Uniprot ID:
Q8TE99
Molecular weight:
55239.395
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
VAT1L
Uniprot ID:
Q9HCJ6
Molecular weight:
45899.2
General function:
Involved in zinc ion binding
Specific function:
May be involved in the generation of reactive oxygen species (ROS). Has low NADPH-dependent naphtoquinone reductase activity, with a preference for 1,2-naphtoquinone over 1,4- naphtoquinone. Has low NADPH-dependent diamine reductase activity (in vitro)
Gene Name:
TP53I3
Uniprot ID:
Q53FA7
Molecular weight:
35535.9
General function:
Involved in zinc ion binding
Specific function:
Possesses ATPase activity. Plays a part in calcium-regulated keratinocyte activation in epidermal repair mechanisms. Has no effect on cell proliferation
Gene Name:
VAT1
Uniprot ID:
Q99536
Molecular weight:
41920.0
General function:
Involved in zinc ion binding
Specific function:
Appears to be a potent inhibitor of regeneration following spinal cord injury
Gene Name:
RTN4IP1
Uniprot ID:
Q8WWV3
Molecular weight:
43589.4