You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:06:52 UTC
HMDB IDHMDB04832
Secondary Accession NumbersNone
Metabolite Identification
Common NameGalabiosylceramide (d18:1/9Z-18:1)
DescriptionGalabiosylceramide is a non-acidic diglycosphingolipids, i.e. a sphingolipid with two or more carbohydrate moieties attached to a ceramide unit. It is a vital component of cellular membranes of most eukaryotic organisms and some bacteria. Its abundance relative to other lipids is usually low other than in epithelial and neuronal cells. Galabiosylceramide is one of the lipids that accumulate in excessive amounts in Fabry's disease. Fabry disease (FD) is an X-linked inborn error of glycosphingolipid (GSL) metabolism, caused by a deficiency of the lysosomal alpha-galactosidase A, which results in high levels in lysosomes and biological fluids of galabiosylceramide, also known as digalactosylceramide (Ga2). In Fabry disease, accumulation of galabiosylceramide is observed by coloration methods associated to optic or electron microscopy or more recently, with imaging mass spectrometry. Galabiosylceramide is the precursor of a series of oligoglycosylceramides. In animal tissues, biosynthesis involves addition of a second monosaccharide unit from the appropriate sugar nucleotide to a monoglycosylceramide, catalysed by a glycosyl transferase, in the lumen of the Golgi apparatus. Glycolipids are important components of the body's immune defense system, either in haptenic reactivity or in antibody-producing potency, i.e. as cellular immunogens or antigens. (PMID: 15702404 , 15959771 , 16324673 , 14761135 ).
Structure
Thumb
Synonyms
ValueSource
1-O-(4-O-alpha-D-Galactopyranosyl-beta-D-galactopyranosyl)-ceramideHMDB
1-O-(4-O-alpha-delta-Galactopyranosyl-beta-delta-galactopyranosyl)-ceramideHMDB
DigalactosylceramideHMDB
Gal-alpha1->4gal-beta1->1'cerHMDB
Chemical FormulaC48H89NO13
Average Molecular Weight888.2192
Monoisotopic Molecular Weight887.633391939
IUPAC Name(9Z)-N-[(4Z)-1-{[(2R,3R,4R,5R,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxyoctadec-4-en-2-yl]octadec-9-enamide
Traditional Name(9Z)-N-[(4Z)-1-{[(2R,3R,4R,5R,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxyoctadec-4-en-2-yl]octadec-9-enamide
CAS Registry Number77538-38-6
SMILES
CCCCCCCCCCCCC\C=C/C(O)C(CO[C@@H]1O[C@H](CO)[C@H](O[C@H]2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O)NC(=O)CCCCCCC\C=C/CCCCCCCC
InChI Identifier
InChI=1S/C48H89NO13/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-40(53)49-36(37(52)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2)35-59-47-45(58)43(56)46(39(34-51)61-47)62-48-44(57)42(55)41(54)38(33-50)60-48/h17-18,29,31,36-39,41-48,50-52,54-58H,3-16,19-28,30,32-35H2,1-2H3,(H,49,53)/b18-17-,31-29-/t36?,37?,38-,39-,41+,42+,43-,44-,45-,46+,47-,48-/m1/s1
InChI KeyInChIKey=YVBUQOZKCCPFCZ-VTAAUCPCSA-N
Chemical Taxonomy
ClassificationNot classified
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Lysosome
  • Golgi apparatus
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityInsolubleNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0057 mg/mLALOGPS
logP6.24ALOGPS
logP7.85ChemAxon
logS-5.2ALOGPS
pKa (Strongest Acidic)11.92ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count13ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area227.86 Å2ChemAxon
Rotatable Bond Count37ChemAxon
Refractivity240.92 m3·mol-1ChemAxon
Polarizability105.07 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Lysosome
  • Golgi apparatus
Biofluid LocationsNot Available
Tissue Location
  • Brain
  • Heart
  • Kidney
PathwaysNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB023433
KNApSAcK IDNot Available
Chemspider ID16744849
KEGG Compound IDC06126
BioCyc IDNot Available
BiGG ID2267787
Wikipedia LinkNot Available
NuGOwiki LinkHMDB04832
Metagene LinkHMDB04832
METLIN ID7091
PubChem Compound20057273
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. [12829005 ]
  2. Falk P, Hoskins LC, Larson G: Enhancing effects of bile salts on the degradation of glycosphingolipids by glycosidases from bacteria of the human fecal flora. Biochim Biophys Acta. 1991 Jul 9;1084(2):139-48. [1854798 ]
  3. Ghislain J, Lingwood CA, Fish EN: Evidence for glycosphingolipid modification of the type 1 IFN receptor. J Immunol. 1994 Oct 15;153(8):3655-63. [7930586 ]
  4. Burger KN, van der Bijl P, van Meer G: Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J Cell Biol. 1996 Apr;133(1):15-28. [8601603 ]
  5. van der Bijl P, Lopes-Cardozo M, van Meer G: Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells. J Cell Biol. 1996 Mar;132(5):813-21. [8603914 ]
  6. Lanne B, Jondal M, Karlsson KA: Gal alpha 4Gal-binding antibodies: specificity and use for the mapping of glycolipids of Burkitt lymphoma and other human tumors. Glycobiology. 1996 Jun;6(4):423-31. [8842706 ]
  7. Ledvinova J, Poupetova H, Hanackova A, Pisacka M, Elleder M: Blood group B glycosphingolipids in alpha-galactosidase deficiency (Fabry disease): influence of secretor status. Biochim Biophys Acta. 1997 Apr 1;1345(2):180-7. [9106497 ]
  8. Mills K, Morris P, Lee P, Vellodi A, Waldek S, Young E, Winchester B: Measurement of urinary CDH and CTH by tandem mass spectrometry in patients hemizygous and heterozygous for Fabry disease. J Inherit Metab Dis. 2005;28(1):35-48. [15702404 ]
  9. Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P, Chaminade P, Laprevote O: Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem. 2005 Jul;382(5):1209-16. Epub 2005 Jun 16. [15959771 ]
  10. Roy S, Touboul D, Brunelle A, Germain DP, Laprevote O, Chaminade P: [Imaging mass spectrometry and direct analysis of globotriaosylceramide and galabiosylceramide in tissue.]. Med Sci (Paris). 2005 Dec;21(11 Suppl):55-6. [16324673 ]
  11. Bongiorno MR, Pistone G, Arico M: Fabry disease: enzyme replacement therapy. J Eur Acad Dermatol Venereol. 2003 Nov;17(6):676-9. [14761135 ]

Only showing the first 50 proteins. There are 61 proteins in total.

Enzymes

General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in galactosylceramide sulfotransferase activity
Specific function:
Catalyzes the sulfation of membrane glycolipids. Seems to prefer beta-glycosides at the non-reducing termini of sugar chains attached to a lipid moiety. Catalyzes the synthesis of galactosylceramide sulfate (sulfatide), a major lipid component of the myelin sheath and of monogalactosylalkylacylglycerol sulfate (seminolipid), present in spermatocytes (By similarity). Also acts on lactosylceramide, galactosyl 1-alkyl-2-sn-glycerol and galactosyl diacylglycerol (in vitro).
Gene Name:
GAL3ST1
Uniprot ID:
Q99999
Molecular weight:
48763.63
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
GLA
Uniprot ID:
P06280
Molecular weight:
Not Available
General function:
Involved in hydrolase activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic activity.
Gene Name:
SMPD1
Uniprot ID:
P17405
Molecular weight:
69935.53
General function:
Cell wall/membrane/envelope biogenesis
Specific function:
Catalyzes the first glycosylation step in glycosphingolipid biosynthesis, the transfer of glucose to ceramide. May also serve as a "flippase".
Gene Name:
UGCG
Uniprot ID:
Q16739
Molecular weight:
44853.255
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGP
Uniprot ID:
P57054
Molecular weight:
18089.055
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGC
Uniprot ID:
Q92535
Molecular weight:
33582.18
General function:
Involved in lipid metabolic process
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid.
Gene Name:
ASAH1
Uniprot ID:
Q13510
Molecular weight:
44045.27
General function:
Involved in catalytic activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activity toward palmitoyl lyso-phosphocholine. Does not appear to have nucleotide pyrophosphatase activity.
Gene Name:
ENPP7
Uniprot ID:
Q6UWV6
Molecular weight:
51493.415
General function:
Involved in metal ion binding
Specific function:
Converts sphingomyelin to ceramide. Hydrolyze 1-acyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-platelet-activating factor). The physiological substrate seems to be Lyso-PAF.
Gene Name:
SMPD2
Uniprot ID:
O60906
Molecular weight:
47645.29
General function:
Involved in protein binding
Specific function:
May mediate the intracellular trafficking of ceramide in a non-vesicular manner
Gene Name:
COL4A3BP
Uniprot ID:
Q9Y5P4
Molecular weight:
70834.4
General function:
Involved in sphingolipid activator protein activity
Specific function:
Binds gangliosides and stimulates ganglioside GM2 degradation. It stimulates only the breakdown of ganglioside GM2 and glycolipid GA2 by beta-hexosaminidase A. It extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-D-galactosamine and conversion to GM3
Gene Name:
GM2A
Uniprot ID:
P17900
Molecular weight:
20838.1
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
GBA
Uniprot ID:
P04062
Molecular weight:
59715.745
General function:
Involved in immune response
Specific function:
T-cell surface glycoprotein CD1e, soluble is required for the presentation of glycolipid antigens on the cell surface. The membrane-associated form is not active
Gene Name:
CD1E
Uniprot ID:
P15812
Molecular weight:
43626.1
General function:
Involved in cholesterol binding
Specific function:
May be involved in the regulation of the lipid composition of sperm membranes during the maturation in the epididymis
Gene Name:
NPC2
Uniprot ID:
P61916
Molecular weight:
16570.1
General function:
Involved in sphingosine N-acyltransferase activity
Specific function:
May be either a bona fide (dihydro)ceramide synthase or a modulator of its activity. When overexpressed in cells is involved in the production of sphingolipids containing mainly one fatty acid donor (N-linked stearoyl- (C18) ceramide) in a fumonisin B1-independent manner (By similarity).
Gene Name:
CERS1
Uniprot ID:
P27544
Molecular weight:
Not Available
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self glycolipids and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1D
Uniprot ID:
P15813
Molecular weight:
37717.0
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the first alpha-1,4-mannose to GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGM
Uniprot ID:
Q9H3S5
Molecular weight:
49459.2
General function:
Involved in transferase activity, transferring acyl groups
Specific function:
Probable acetyltransferase, which acetylates the inositol ring of phosphatidylinositol during biosynthesis of GPI-anchor. Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity).
Gene Name:
PIGW
Uniprot ID:
Q7Z7B1
Molecular weight:
Not Available
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Essential component of glycosylphosphatidylinositol- mannosyltransferase 1 which transfers the first of the 4 mannoses in the GPI-anchor precursors during GPI-anchor biosynthesis. Probably acts by stabilizing the mannosyltransferase PIGM
Gene Name:
PIGX
Uniprot ID:
Q8TBF5
Molecular weight:
28788.1
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers a fourth mannose to some trimannosyl-GPIs during GPI precursor assembly. The presence of a fourth mannose in GPI is facultative and only scarcely detected, suggesting that it only exists in some tissues
Gene Name:
PIGZ
Uniprot ID:
Q86VD9
Molecular weight:
63472.6
General function:
Involved in galactosyltransferase activity
Specific function:
Beta-1,3-N-acetylglucosaminyltransferase that plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids, notably by participating in biosynthesis of HNK-1 and Lewis X carbohydrate structures. Has strong activity toward lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. Probably plays a central role in regulating neolacto-series glycolipid synthesis during embryonic development.
Gene Name:
B3GNT5
Uniprot ID:
Q9BYG0
Molecular weight:
44052.295
General function:
Involved in metal ion binding
Specific function:
Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization.
Gene Name:
SMPD3
Uniprot ID:
Q9NY59
Molecular weight:
71080.1
General function:
Involved in galactosyltransferase activity
Specific function:
Catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Can use glycolipid LC3Cer as an efficient acceptor
Gene Name:
B3GALT5
Uniprot ID:
Q9Y2C3
Molecular weight:
36188.9
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the third alpha-1,2-mannose to Man2-GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGB
Uniprot ID:
Q92521
Molecular weight:
65055.9
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Involved in GPI-anchor biosynthesis through the transfer of ethanolamine phosphate to the third mannose of GPI
Gene Name:
PIGF
Uniprot ID:
Q07326
Molecular weight:
24889.3
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI second mannose
Gene Name:
PIGG
Uniprot ID:
Q5H8A4
Molecular weight:
108171.7
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor
Gene Name:
PIGN
Uniprot ID:
O95427
Molecular weight:
105809.2
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI third mannose which links the GPI-anchor to the C-terminus of the proteins by an amide bond
Gene Name:
PIGO
Uniprot ID:
Q8TEQ8
Molecular weight:
118697.6
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGS
Uniprot ID:
Q96S52
Molecular weight:
61655.5
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGT
Uniprot ID:
Q969N2
Molecular weight:
65699.0
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI transamidase complex. May be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI
Gene Name:
PIGU
Uniprot ID:
Q9H490
Molecular weight:
50051.2
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Alpha-1,6-mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the second mannose to the glycosylphosphatidylinositol during GPI precursor assembly
Gene Name:
PIGV
Uniprot ID:
Q9NUD9
Molecular weight:
55712.1
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI-GlcNAc transferase (GPI-GnT) complex in the endoplasmic reticulum, a complex that catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI- anchors for cell surface proteins. May act by regulating the catalytic subunit PIGA
Gene Name:
PIGY
Uniprot ID:
Q3MUY2
Molecular weight:
8057.5
General function:
Involved in glycolipid transporter activity
Specific function:
Involved in TGN-to-plasma membrane transport and in the formation of post-Golgi constitutive carriers. May play a role in ensuring the coordination of the budding and the fission reactions
Gene Name:
PLEKHA8
Uniprot ID:
Q96JA3
Molecular weight:
58306.0
General function:
Involved in metal ion binding
Specific function:
Catalyzes the hydrolysis of membrane sphingomyelin to form phosphorylcholine and ceramide.
Gene Name:
SMPD4
Uniprot ID:
Q9NXE4
Molecular weight:
86192.575
General function:
Involved in ceramidase activity
Specific function:
May hydrolyze the sphingolipid ceramide into sphingosine and free fatty acid (By similarity).
Gene Name:
ASAH2C
Uniprot ID:
P0C7U2
Molecular weight:
Not Available
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid. Unsaturated long-chain ceramides are the best substrates, saturated long-chain ceramides and unsaturated very long-chain ceramides are good substrates, whereas saturated very long-chain ceramides and short-chain ceramides were poor substrates. The substrate preference is D-erythro-C(18:1)-, C(20:1)-, C(20:4)-ceramide > D-erythro-C(16:0)-, C(18:0), C(20:0)-ceramide > D-erythro-C(24:1)-ceramide > D-erythro-C(12:0)-ceramide, D-erythro-C(14:0)-ceramides > D-erythro-C(24:0)-ceramide > D-erythro-C(6:0)-ceramide. Inhibits the maturation of protein glycosylation in the Golgi complex, including that of integrin beta-1 (ITGB1) and of LAMP1, by increasing the levels of sphingosine. Inhibits cell adhesion by reducing the level of ITGB1 in the cell surface. May have a role in cell proliferation and apoptosis that seems to depend on the balance between sphingosine and sphingosine-1-phosphate.
Gene Name:
ACER2
Uniprot ID:
Q5QJU3
Molecular weight:
31308.85
General function:
Involved in ceramidase activity
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 6.5-8.5. Acts as a key regulator of sphingolipid signaling metabolites by generating sphingosine at the cell surface. Acts as a repressor of apoptosis both by reducing C16-ceramide, thereby preventing ceramide-induced apoptosis, and generating sphingosine, a precursor of the antiapoptotic factor sphingosine 1-phosphate. Probably involved in the digestion of dietary sphingolipids in intestine by acting as a key enzyme for the catabolism of dietary sphingolipids and regulating the levels of bioactive sphingolipid metabolites in the intestinal tract.
Gene Name:
ASAH2
Uniprot ID:
Q9NR71
Molecular weight:
19024.55
General function:
Involved in catalytic activity
Specific function:
Non-lysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide. Involved in sphingomyelin generation and prevention of glycolipid accumulation. May also catalyze the hydrolysis of bile acid 3-O-glucosides, however, the relevance of such activity is unclear in vivo.
Gene Name:
GBA2
Uniprot ID:
Q9HCG7
Molecular weight:
104648.13
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 8.0. Has a highly restricted substrate specificity for the natural stereoisomer of ceramide with D-erythro-sphingosine but not D-ribo-phytosphingosine or D-erythro-dihydrosphingosine as a backbone. May have a role in regulating the levels of bioactive lipids ceramide and sphingosine 1-phosphate, as well as complex sphingolipids (By similarity).
Gene Name:
ACER1
Uniprot ID:
Q8TDN7
Molecular weight:
31095.165
General function:
Involved in binding
Specific function:
Plays an inhibitory role on natural killer (NK) cells cytotoxicity. Activation results in specific acid sphingomyelinase/SMPD1 stimulation with subsequent marked elevation of intracellular ceramide. Activation also leads to AKT1/PKB and RPS6KA1/RSK1 kinases stimulation as well as markedly enhanced T-cell proliferation induced by anti-CD3. Acts as a lectin that binds to the terminal carbohydrate Gal-alpha(1,3)Gal epitope as well as to the N-acetyllactosamine epitope. Binds also to CLEC2D/LLT1 as a ligand and inhibits NK cell-mediated cytotoxicity as well as interferon-gamma secretion in target cells
Gene Name:
KLRB1
Uniprot ID:
Q12918
Molecular weight:
25414.6
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
May be either a bona fide (dihydro)ceramide synthase or a modulator of its activity. When overexpressed in cells is involved in the production of sphingolipids containing mainly one fatty acid donor (N-linked palmitoyl- (C16) ceramide) in a fumonisin B1-independent manner (By similarity).
Gene Name:
CERS5
Uniprot ID:
Q8N5B7
Molecular weight:
Not Available
General function:
Involved in ATP binding
Specific function:
Plays a role in phagocytosis by macrophages of apoptotic cells. Binds APOA1 and may function in apolipoprotein-mediated phospholipid efflux from cells. May also mediate cholesterol efflux. May regulate cellular ceramide homeostasis during keratinocytes differentiation
Gene Name:
ABCA7
Uniprot ID:
Q8IZY2
Molecular weight:
234347.2
General function:
Involved in cysteine-type endopeptidase activity
Specific function:
Mediates GPI anchoring in the endoplasmic reticulum, by replacing a protein's C-terminal GPI attachment signal peptide with a pre-assembled GPI. During this transamidation reaction, the GPI transamidase forms a carbonyl intermediate with the substrate protein
Gene Name:
PIGK
Uniprot ID:
Q92643
Molecular weight:
45251.4

Only showing the first 50 proteins. There are 61 proteins in total.