You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2005-11-16 15:48:42 UTC
Update Date2016-02-11 01:06:54 UTC
HMDB IDHMDB04866
Secondary Accession Numbers
  • HMDB00173
Metabolite Identification
Common NameLactosylceramide (d18:1/12:0)
DescriptionLactosylceramide (d18:1/12:0) is a lactosylceramide or LacCer. Lactosylceramides are the most important and abundant of the diosylceramides. Lactosylceramides (LacCer) were originally called 'cytolipin H'. It is found in small amounts only in most animal tissues, but it has a number of significant biological functions and it is of great importance as the biosynthetic precursor of most of the neutral oligoglycosylceramides, sulfatides and gangliosides. In animal tissues, biosynthesis of lactosylceramide involves addition of the second monosaccharides unit (galactose) as its nucleotide derivative to monoglucosylceramide, catalysed by a specific beta-1,4-galactosyltransferase on the lumenal side of the Golgi apparatus. The glucosylceramide precursor must first cross from the cytosolic side of the membrane, possibly via the action of a flippase. The lactosylceramide produced can be further glycosylated or transferred to the plasma membrane. Lactosylceramide may assist in stabilizing the plasma membrane and activating receptor molecules in the special micro-domains or rafts, as with the cerebrosides. It may also have its own specialized function in the immunological system in that it is known to bind to specific bacteria. In addition, it is believed that a number of pro-inflammatory factors activate lactosylceramide synthase to generate lactosylceramide, which in turn activates "oxygen-sensitive" signalling pathways that affect such cellular processes as proliferation, adhesion, migration and angiogenesis. Dysfunctions in these pathways can affect several diseases of the cardiovascular system, cancer and inflammatory states, so lactosylceramide metabolism is a potential target for new therapeutic treatments. beta-D-Galactosyl-1,4-beta-D-glucosylceramide is the second to last step in the synthesis of N-Acylsphingosine and is converted. from Glucosylceramide via the enzyme beta-1,4-galactosyltransferase 6(EC:2.4.1.-). It can be converted to Glucosylceramide via the enzyme beta-galactosidase (EC:3.2.1.23).
Structure
Thumb
Synonyms
ValueSource
1-O-(4-O-b-D-Galactopyranosyl-b-D-glucopyranosyl)-ceramideHMDB
1-O-(4-O-beta-D-Galactopyranosyl-beta-glucopyranosyl)ceramideHMDB
1-O-(4-O-beta-delta-Galactopyranosyl-beta-delta-glucopyranosyl)-ceramideHMDB
1-O-(4-O-beta-delta-Galactopyranosyl-beta-glucopyranosyl)ceramideHMDB
1Ylce-O-(4-O-beta-delta-galactopyranosyl-beta-glucopyranosyl)ceramideHMDB
beta-D-Galactosyl-1,4-beta-D-glucosylceramideHMDB
beta-delta-Galactosyl-1,4-beta-delta-glucosramideHMDB
beta-delta-Galactosyl-1,4-beta-delta-glucosylceramideHMDB
CDHHMDB
CDW17 AntigenHMDB
Cytolipin HHMDB
D-Galactosyl-1,4-beta-D-glucosylceramideHMDB
delta-Galactosyl-1,4-beta-delta-glucosylceramideHMDB
Gal-beta1->4GLC-beta1->1'cerHMDB
LacCerHMDB
LacCer(D18:1/12:0)HMDB
Lactosyl ceramide (D18:1/12:0)HMDB
Lactosyl-N-acylsphingosineHMDB
LactosylceramideHMDB
N-(Dodecanoyl)-1-b-lactosyl-sphing-4-enineHMDB
N-(Dodecanoyl)-1-beta-lactosyl-sphing-4-enineHMDB
N-Lignoceryl sphingosyl lactosideHMDB
Chemical FormulaC42H79NO13
Average Molecular Weight806.0756
Monoisotopic Molecular Weight805.555141619
IUPAC NameN-[(2S,3R,4E)-1-{[(2R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxyoctadec-4-en-2-yl]dodecanamide
Traditional NameN-[(2S,3R,4E)-1-{[(2R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxyoctadec-4-en-2-yl]dodecanamide
CAS Registry Number4682-48-8
SMILES
CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO[C@@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)C1O)NC(=O)CCCCCCCCCCC
InChI Identifier
InChI=1S/C42H79NO13/c1-3-5-7-9-11-13-14-15-16-18-19-21-23-25-31(46)30(43-34(47)26-24-22-20-17-12-10-8-6-4-2)29-53-41-39(52)37(50)40(33(28-45)55-41)56-42-38(51)36(49)35(48)32(27-44)54-42/h23,25,30-33,35-42,44-46,48-52H,3-22,24,26-29H2,1-2H3,(H,43,47)/b25-23+/t30-,31+,32+,33+,35-,36-,37+,38+,39?,40+,41+,42-/m0/s1
InChI KeyInChIKey=KNWHKVBHCLQVFX-QXWNENIHSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as glycosphingolipids. These are sphingolipids containing a saccharide moiety glycosidically attached to the sphingoid base. Although saccharide moieties are mostly O-glycosidically linked to the ceramide moiety, other sphingolipids with glycosidic bonds of other types (e.g. S-,C-, or N-type) has been reported.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassGlycosphingolipids
Direct ParentGlycosphingolipids
Alternative Parents
Substituents
  • Simple glycosphingolipid
  • Glycosphingolipid
  • Fatty acyl glycoside of mono- or disaccharide
  • Fatty acyl glycoside
  • Alkyl glycoside
  • O-glycosyl compound
  • Glycosyl compound
  • Disaccharide
  • Fatty acyl
  • Oxane
  • N-acyl-amine
  • Fatty amide
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Polyol
  • Carboxamide group
  • 1,2-diol
  • Oxacycle
  • Organoheterocyclic compound
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Acetal
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Component of Ganglioside biosynthesis
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityInsolubleNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.021 mg/mLALOGPS
logP4.61ALOGPS
logP5.55ChemAxon
logS-4.6ALOGPS
pKa (Strongest Acidic)11.92ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count13ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area227.86 Å2ChemAxon
Rotatable Bond Count32ChemAxon
Refractivity212.2 m3·mol-1ChemAxon
Polarizability94.74 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
Tissue Location
  • Adrenal Gland
  • Brain
  • Fibroblasts
  • Nerve Cells
  • Neuron
Pathways
NameSMPDB LinkKEGG Link
Fabry diseaseSMP00525Not Available
Gaucher DiseaseSMP00349Not Available
Globoid Cell LeukodystrophySMP00348Not Available
Krabbe diseaseSMP00526Not Available
Metachromatic Leukodystrophy (MLD)SMP00347Not Available
Sphingolipid MetabolismSMP00034map00500
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified4.5 +/- 1.0 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified3.0 (2.9-3.3) uMAdult (>18 years old)BothAbetalipoproteinemia details
BloodDetected and Quantified2.5 (2.7-2.8) uMAdult (>18 years old)BothHypobetalipoproteinemia details
Associated Disorders and Diseases
Disease References
Abetalipoproteinemia
  1. Dawson G, Kruski AW, Scanu AM: Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res. 1976 Mar;17(2):125-31. [178813 ]
Hypobetalipoproteinemia
  1. Dawson G, Kruski AW, Scanu AM: Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res. 1976 Mar;17(2):125-31. [178813 ]
Associated OMIM IDs
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB023465
KNApSAcK IDNot Available
Chemspider ID16744880
KEGG Compound IDC01290
BioCyc IDCYTOLIPIN_H
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB04866
Metagene LinkHMDB04866
METLIN ID7123
PubChem Compound20057304
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNicolaou, K. C.; Caulfield, T.; Kataoka, H.; Kumazawa, T. A practical and enantioselective synthesis of glycosphingolipids and related compounds. Total synthesis of globotriaosylceramide (Gb3). Journal of the American Chemical Society (1988), 110(23), 791
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Takizawa M, Nomura T, Wakisaka E, Yoshizuka N, Aoki J, Arai H, Inoue K, Hattori M, Matsuo N: cDNA cloning and expression of human lactosylceramide synthase. Biochim Biophys Acta. 1999 May 18;1438(2):301-4. [10320813 ]
  2. Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. [12829005 ]
  3. Ledvinova J, Poupetova H, Hanackova A, Pisacka M, Elleder M: Blood group B glycosphingolipids in alpha-galactosidase deficiency (Fabry disease): influence of secretor status. Biochim Biophys Acta. 1997 Apr 1;1345(2):180-7. [9106497 ]
  4. Choudhury A, Dominguez M, Puri V, Sharma DK, Narita K, Wheatley CL, Marks DL, Pagano RE: Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest. 2002 Jun;109(12):1541-50. [12070301 ]
  5. Sala G, Dupre T, Seta N, Codogno P, Ghidoni R: Increased biosynthesis of glycosphingolipids in congenital disorder of glycosylation Ia (CDG-Ia) fibroblasts. Pediatr Res. 2002 Nov;52(5):645-51. [12409508 ]
  6. Furukawa K, Takamiya K, Furukawa K: Beta1,4-N-acetylgalactosaminyltransferase--GM2/GD2 synthase: a key enzyme to control the synthesis of brain-enriched complex gangliosides. Biochim Biophys Acta. 2002 Dec 19;1573(3):356-62. [12417418 ]
  7. Komagome R, Sawa H, Suzuki T, Suzuki Y, Tanaka S, Atwood WJ, Nagashima K: Oligosaccharides as receptors for JC virus. J Virol. 2002 Dec;76(24):12992-3000. [12438625 ]
  8. Prinetti A, Basso L, Appierto V, Villani MG, Valsecchi M, Loberto N, Prioni S, Chigorno V, Cavadini E, Formelli F, Sonnino S: Altered sphingolipid metabolism in N-(4-hydroxyphenyl)-retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem. 2003 Feb 21;278(8):5574-83. Epub 2002 Dec 16. [12486134 ]
  9. Moore RM, Silver RJ, Moore JJ: Physiological apoptotic agents have different effects upon human amnion epithelial and mesenchymal cells. Placenta. 2003 Feb-Mar;24(2-3):173-80. [12566244 ]
  10. Hulkova H, Ledvinova J, Asfaw B, Koubek K, Kopriva K, Elleder M: Lactosylceramide in lysosomal storage disorders: a comparative immunohistochemical and biochemical study. Virchows Arch. 2005 Jul;447(1):31-44. Epub 2005 May 26. [15918012 ]
  11. Sharma DK, Brown JC, Cheng Z, Holicky EL, Marks DL, Pagano RE: The glycosphingolipid, lactosylceramide, regulates beta1-integrin clustering and endocytosis. Cancer Res. 2005 Sep 15;65(18):8233-41. [16166299 ]
  12. Stevens CR, Oberholzer VG, Walker-Smith JA, Phillips AD: Lactosylceramide in inflammatory bowel disease: a biochemical study. Gut. 1988 May;29(5):580-7. [3396945 ]
  13. Tanaka H, Suzuki K: Lactosylceramidase assays for diagnosis of globoid cell leukodystrophy and GM1-gangliosidosis. Clin Chim Acta. 1977 Mar 1;75(2):267-74. [403037 ]

Only showing the first 50 proteins. There are 72 proteins in total.

Enzymes

General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in exo-alpha-sialidase activity
Specific function:
Hydrolyzes sialylated compounds.
Gene Name:
NEU2
Uniprot ID:
Q9Y3R4
Molecular weight:
Not Available
General function:
Involved in exo-alpha-sialidase activity
Specific function:
May function in lysosomal catabolism of sialylated glycoconjugates. Has sialidase activity towards synthetic substrates, such as 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (4-MU-NANA or 4MU-NeuAc). Has a broad substrate specificity being active on glycoproteins, oligosaccharides and sialylated glycolipids.
Gene Name:
NEU4
Uniprot ID:
Q8WWR8
Molecular weight:
Not Available
General function:
Involved in exo-alpha-sialidase activity
Specific function:
Catalyzes the removal of sialic acid (N-acetylneuramic acid) moities from glycoproteins and glycolipids. To be active, it is strictly dependent on its presence in the multienzyme complex. Appears to have a preference for alpha 2-3 and alpha 2-6 sialyl linkage.
Gene Name:
NEU1
Uniprot ID:
Q99519
Molecular weight:
Not Available
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
LPH splits lactose in the small intestine.
Gene Name:
LCT
Uniprot ID:
P09848
Molecular weight:
218584.77
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
GLA
Uniprot ID:
P06280
Molecular weight:
Not Available
General function:
Involved in sialyltransferase activity
Specific function:
Catalyzes the formation of ganglioside GM3 (alpha-N-acetylneuraminyl-2,3-beta-D-galactosyl-1, 4-beta-D-glucosylceramide).
Gene Name:
ST3GAL5
Uniprot ID:
Q9UNP4
Molecular weight:
45584.69
General function:
Involved in hydrolase activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic activity.
Gene Name:
SMPD1
Uniprot ID:
P17405
Molecular weight:
69935.53
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
Cleaves beta-linked terminal galactosyl residues from gangliosides, glycoproteins, and glycosaminoglycans. Isoform 2 has no beta-galactosidase catalytic activity, but plays functional roles in the formation of extracellular elastic fibers (elastogenesis) and in the development of connective tissue. Seems to be identical to the elastin-binding protein (EBP), a major component of the non-integrin cell surface receptor expressed on fibroblasts, smooth muscle cells, chondroblasts, leukocytes, and certain cancer cell types. In elastin producing cells, associates with tropoelastin intracellularly and functions as a recycling molecular chaperone which facilitates the secretions of tropoelastin and its assembly into elastic fibers.
Gene Name:
GLB1
Uniprot ID:
P16278
Molecular weight:
Not Available
General function:
Cell wall/membrane/envelope biogenesis
Specific function:
Catalyzes the first glycosylation step in glycosphingolipid biosynthesis, the transfer of glucose to ceramide. May also serve as a "flippase".
Gene Name:
UGCG
Uniprot ID:
Q16739
Molecular weight:
44853.255
General function:
Involved in beta-N-acetylhexosaminidase activity
Specific function:
Responsible for the degradation of GM2 gangliosides, and a variety of other molecules containing terminal N-acetyl hexosamines, in the brain and other tissues.
Gene Name:
HEXB
Uniprot ID:
P07686
Molecular weight:
Not Available
General function:
Involved in beta-N-acetylhexosaminidase activity
Specific function:
Responsible for the degradation of GM2 gangliosides, and a variety of other molecules containing terminal N-acetyl hexosamines, in the brain and other tissues. The form B is active against certain oligosaccharides. The form S has no measurable activity.
Gene Name:
HEXA
Uniprot ID:
P06865
Molecular weight:
Not Available
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Involved in the biosynthesis of gangliosides GM2, GD2 and GA2.
Gene Name:
B4GALNT1
Uniprot ID:
Q00973
Molecular weight:
58881.78
General function:
Involved in galactosyltransferase activity
Specific function:
Necessary for the biosynthesis of the Pk antigen of blood histogroup P. Catalyzes the transfer of galactose to lactosylceramide and galactosylceramide. Necessary for the synthesis of the receptor for bacterial verotoxins.
Gene Name:
A4GALT
Uniprot ID:
Q9NPC4
Molecular weight:
40498.78
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGP
Uniprot ID:
P57054
Molecular weight:
18089.055
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGC
Uniprot ID:
Q92535
Molecular weight:
33582.18
General function:
Involved in lipid metabolic process
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid.
Gene Name:
ASAH1
Uniprot ID:
Q13510
Molecular weight:
44045.27
General function:
Involved in catalytic activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activity toward palmitoyl lyso-phosphocholine. Does not appear to have nucleotide pyrophosphatase activity.
Gene Name:
ENPP7
Uniprot ID:
Q6UWV6
Molecular weight:
51493.415
General function:
Involved in metal ion binding
Specific function:
Converts sphingomyelin to ceramide. Hydrolyze 1-acyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-platelet-activating factor). The physiological substrate seems to be Lyso-PAF.
Gene Name:
SMPD2
Uniprot ID:
O60906
Molecular weight:
47645.29
General function:
Involved in protein binding
Specific function:
May mediate the intracellular trafficking of ceramide in a non-vesicular manner
Gene Name:
COL4A3BP
Uniprot ID:
Q9Y5P4
Molecular weight:
70834.4
General function:
Involved in sphingolipid activator protein activity
Specific function:
Binds gangliosides and stimulates ganglioside GM2 degradation. It stimulates only the breakdown of ganglioside GM2 and glycolipid GA2 by beta-hexosaminidase A. It extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-D-galactosamine and conversion to GM3
Gene Name:
GM2A
Uniprot ID:
P17900
Molecular weight:
20838.1
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
GBA
Uniprot ID:
P04062
Molecular weight:
59715.745
General function:
Involved in immune response
Specific function:
T-cell surface glycoprotein CD1e, soluble is required for the presentation of glycolipid antigens on the cell surface. The membrane-associated form is not active
Gene Name:
CD1E
Uniprot ID:
P15812
Molecular weight:
43626.1
General function:
Involved in cholesterol binding
Specific function:
May be involved in the regulation of the lipid composition of sperm membranes during the maturation in the epididymis
Gene Name:
NPC2
Uniprot ID:
P61916
Molecular weight:
16570.1
General function:
Involved in sphingosine N-acyltransferase activity
Specific function:
May be either a bona fide (dihydro)ceramide synthase or a modulator of its activity. When overexpressed in cells is involved in the production of sphingolipids containing mainly one fatty acid donor (N-linked stearoyl- (C18) ceramide) in a fumonisin B1-independent manner (By similarity).
Gene Name:
CERS1
Uniprot ID:
P27544
Molecular weight:
Not Available
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self glycolipids and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1D
Uniprot ID:
P15813
Molecular weight:
37717.0
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the first alpha-1,4-mannose to GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGM
Uniprot ID:
Q9H3S5
Molecular weight:
49459.2
General function:
Involved in transferase activity, transferring acyl groups
Specific function:
Probable acetyltransferase, which acetylates the inositol ring of phosphatidylinositol during biosynthesis of GPI-anchor. Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity).
Gene Name:
PIGW
Uniprot ID:
Q7Z7B1
Molecular weight:
Not Available
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Essential component of glycosylphosphatidylinositol- mannosyltransferase 1 which transfers the first of the 4 mannoses in the GPI-anchor precursors during GPI-anchor biosynthesis. Probably acts by stabilizing the mannosyltransferase PIGM
Gene Name:
PIGX
Uniprot ID:
Q8TBF5
Molecular weight:
28788.1
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers a fourth mannose to some trimannosyl-GPIs during GPI precursor assembly. The presence of a fourth mannose in GPI is facultative and only scarcely detected, suggesting that it only exists in some tissues
Gene Name:
PIGZ
Uniprot ID:
Q86VD9
Molecular weight:
63472.6
General function:
Involved in galactosyltransferase activity
Specific function:
Beta-1,3-N-acetylglucosaminyltransferase that plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids, notably by participating in biosynthesis of HNK-1 and Lewis X carbohydrate structures. Has strong activity toward lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. Probably plays a central role in regulating neolacto-series glycolipid synthesis during embryonic development.
Gene Name:
B3GNT5
Uniprot ID:
Q9BYG0
Molecular weight:
44052.295
General function:
Involved in metal ion binding
Specific function:
Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization.
Gene Name:
SMPD3
Uniprot ID:
Q9NY59
Molecular weight:
71080.1
General function:
Involved in galactosyltransferase activity
Specific function:
Catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Can use glycolipid LC3Cer as an efficient acceptor
Gene Name:
B3GALT5
Uniprot ID:
Q9Y2C3
Molecular weight:
36188.9
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Required for the biosynthesis of glycosphingolipids.
Gene Name:
B4GALT6
Uniprot ID:
Q9UBX8
Molecular weight:
44913.315
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the third alpha-1,2-mannose to Man2-GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGB
Uniprot ID:
Q92521
Molecular weight:
65055.9
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Involved in GPI-anchor biosynthesis through the transfer of ethanolamine phosphate to the third mannose of GPI
Gene Name:
PIGF
Uniprot ID:
Q07326
Molecular weight:
24889.3
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI second mannose
Gene Name:
PIGG
Uniprot ID:
Q5H8A4
Molecular weight:
108171.7
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor
Gene Name:
PIGN
Uniprot ID:
O95427
Molecular weight:
105809.2
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI third mannose which links the GPI-anchor to the C-terminus of the proteins by an amide bond
Gene Name:
PIGO
Uniprot ID:
Q8TEQ8
Molecular weight:
118697.6
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGS
Uniprot ID:
Q96S52
Molecular weight:
61655.5
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGT
Uniprot ID:
Q969N2
Molecular weight:
65699.0
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI transamidase complex. May be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI
Gene Name:
PIGU
Uniprot ID:
Q9H490
Molecular weight:
50051.2
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Alpha-1,6-mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the second mannose to the glycosylphosphatidylinositol during GPI precursor assembly
Gene Name:
PIGV
Uniprot ID:
Q9NUD9
Molecular weight:
55712.1
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI-GlcNAc transferase (GPI-GnT) complex in the endoplasmic reticulum, a complex that catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI- anchors for cell surface proteins. May act by regulating the catalytic subunit PIGA
Gene Name:
PIGY
Uniprot ID:
Q3MUY2
Molecular weight:
8057.5
General function:
Involved in glycolipid transporter activity
Specific function:
Involved in TGN-to-plasma membrane transport and in the formation of post-Golgi constitutive carriers. May play a role in ensuring the coordination of the budding and the fission reactions
Gene Name:
PLEKHA8
Uniprot ID:
Q96JA3
Molecular weight:
58306.0

Only showing the first 50 proteins. There are 72 proteins in total.