You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2006-10-17 11:25:30 UTC
Update Date2013-02-09 00:13:49 UTC
HMDB IDHMDB05038
Secondary Accession NumbersNone
Metabolite Identification
Common NameCitalopram
DescriptionCitalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs).
Structure
Thumb
Synonyms
  1. Bonitrile
  2. Celexa
  3. Citalopram hydrobromide
  4. Nitalapram
Chemical FormulaC20H21FN2O
Average Molecular Weight324.3919
Monoisotopic Molecular Weight324.163791509
IUPAC Name1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile
Traditional IUPAC Namecitalopram
CAS Registry Number59729-33-8
SMILES
CN(C)CCCC1(OCC2=C1C=CC(=C2)C#N)C1=CC=C(F)C=C1
InChI Identifier
InChI=1S/C20H21FN2O/c1-23(2)11-3-10-20(17-5-7-18(21)8-6-17)19-9-4-15(13-22)12-16(19)14-24-20/h4-9,12H,3,10-11,14H2,1-2H3
InChI KeyWSEQXVZVJXJVFP-UHFFFAOYSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAromatic Heteropolycyclic Compounds
ClassPhenylbutylamines
Sub ClassN/A
Other Descriptors
  • Aromatic Heteropolycyclic Compounds
  • citalopram(ChEBI)
Substituents
  • Aryl Fluoride
  • Benzofuran
  • Benzonitrile
  • Dialkyl Ether
  • Dihydrofuran
  • Fluorobenzene
  • Nitrile
  • Organofluoride
  • Tertiary Aliphatic Amine (Trialkylamine)
Direct ParentPhenylbutylamines
Ontology
StatusExpected and Not Quantified
Origin
  • Drug
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Membrane (predicted from logP)
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point178 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0059 g/LALOGPS
logP3.58ALOGPS
logP3.76ChemAxon
logS-4.7ALOGPS
pKa (Strongest Basic)9.78ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area36.26ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity94.02ChemAxon
Polarizability35.21ChemAxon
Spectra
Spectra1D NMR2D NMR
Biological Properties
Cellular Locations
  • Membrane (predicted from logP)
Biofluid LocationsNot Available
Tissue Location
  • Brain
  • Liver
  • Platelet
PathwaysNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB023605
KNApSAcK IDNot Available
Chemspider ID2669
KEGG Compound IDC07572
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkCitalopram
NuGOwiki LinkHMDB05038
Metagene LinkHMDB05038
METLIN ID1781
PubChem Compound2771
PDB IDNot Available
ChEBI ID3723
References
Synthesis ReferencePetersen, Hans; Bogeso, Klaus Peter; Bech Sommer, Michael. Lundbeck A/S, Method for the preparation of citalopram. PCT Int. Appl. (1998), 16 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Horak EL, Jenkins AJ: Postmortem tissue distribution of olanzapine and citalopram in a drug intoxication. J Forensic Sci. 2005 May;50(3):679-81. Pubmed: 15932107
  2. Gleason OC, Yates WR, Isbell MD, Philipsen MA: An open-label trial of citalopram for major depression in patients with hepatitis C. J Clin Psychiatry. 2002 Mar;63(3):194-8. Pubmed: 11926717
  3. Blardi P, de Lalla A, Urso R, Auteri A, Dell'Erba A, Bossini L, Castrogiovanni P: Activity of citalopram on adenosine and serotonin circulating levels in depressed patients. J Clin Psychopharmacol. 2005 Jun;25(3):262-6. Pubmed: 15876907
  4. Bhagwagar Z, Hafizi S, Cowen PJ: Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology (Berl). 2002 Aug;163(1):118-20. Epub 2002 Jun 27. Pubmed: 12185409
  5. Nikisch G, Mathe AA, Czernik A, Eap CB, Jimenez-Vasquez P, Brawand-Amey M, Baumann P: Stereoselective metabolism of citalopram in plasma and cerebrospinal fluid of depressive patients: relationship with 5-HIAA in CSF and clinical response. J Clin Psychopharmacol. 2004 Jun;24(3):283-90. Pubmed: 15118482
  6. Anastos N, McIntyre IM, Lynch MJ, Drummer OH: Postmortem concentrations of citalopram. J Forensic Sci. 2002 Jul;47(4):882-4. Pubmed: 12137000
  7. Lapatto-Reiniluoto O, Kivisto KT, Neuvonen PJ: Effect of activated charcoal alone or given after gastric lavage in reducing the absorption of diazepam, ibuprofen and citalopram. Br J Clin Pharmacol. 1999 Aug;48(2):148-53. Pubmed: 10417490
  8. Worm K, Dragsholt C, Simonsen KW, Kringsholm B: [Citalopram in forensic samples. Citalopram concentrations in samples from legal autopsies and from living persons in connection with traffic accidents or cases of violence in Denmark 1989-1996] Ugeskr Laeger. 1999 Jul 26;161(30):4291-2. Pubmed: 10439690
  9. Jensen PN, Olesen OV, Bertelsen A, Linnet K: Citalopram and desmethylcitalopram concentrations in breast milk and in serum of mother and infant. Ther Drug Monit. 1997 Apr;19(2):236-9. Pubmed: 9108657
  10. Schmidt K, Olesen OV, Jensen PN: Citalopram and breast-feeding: serum concentration and side effects in the infant. Biol Psychiatry. 2000 Jan 15;47(2):164-5. Pubmed: 10664835
  11. Rochat B, Kosel M, Boss G, Testa B, Gillet M, Baumann P: Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochem Pharmacol. 1998 Jul 1;56(1):15-23. Pubmed: 9698084
  12. Kristoffersen L, Bugge A, Lundanes E, Slordal L: Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma and whole blood by high-performance liquid chromatography with ultraviolet and fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999 Nov 12;734(2):229-46. Pubmed: 10595721
  13. Nordeng H, Bergsholm YK, Bohler E, Spigset O: [The transfer of selective serotonin reuptake inhibitors to human milk] Tidsskr Nor Laegeforen. 2001 Jan 20;121(2):199-203. Pubmed: 11475200
  14. Plenge P, Mellerup ET: [3H]citalopram binding to brain and platelet membranes of human and rat. J Neurochem. 1991 Jan;56(1):248-52. Pubmed: 1824783
  15. Nikisch G, Mathe AA, Czernik A, Thiele J, Bohner J, Eap CB, Agren H, Baumann P: Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response. Psychopharmacology (Berl). 2005 Oct;181(4):751-60. Epub 2005 Sep 29. Pubmed: 15988572
  16. Spigset O, Hagg S, Stegmayr B, Dahlqvist R: Citalopram pharmacokinetics in patients with chronic renal failure and the effect of haemodialysis. Eur J Clin Pharmacol. 2000 Dec;56(9-10):699-703. Pubmed: 11214779
  17. Anderer P, Saletu B, Semlitsch HV, Pascual-Marqui RD: Perceptual and cognitive event-related potentials in neuropsychopharmacology: methodological aspects and clinical applications (pharmaco-ERP topography and tomography). Methods Find Exp Clin Pharmacol. 2002;24 Suppl C:121-37. Pubmed: 12575494
  18. Kosel M, Gnerre C, Voirol P, Amey M, Rochat B, Bouras C, Testa B, Baumann P: In vitro biotransformation of the selective serotonin reuptake inhibitor citalopram, its enantiomers and demethylated metabolites by monoamine oxidase in rat and human brain preparations. Mol Psychiatry. 2002;7(2):181-8. Pubmed: 11840311
  19. Spigset O, Wilhelmsson C, Mjorndal T, Eriksson S: Low serum sodium concentrations during treatment with citalopram in elderly patients: relationship to serum citalopram levels and to platelet serotonin 5-HT2A receptor status. J Clin Psychopharmacol. 2000 Oct;20(5):582-4. Pubmed: 11001247

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine.
Gene Name:
MAOB
Uniprot ID:
P27338
Molecular weight:
58762.475
Reactions
Citalopram + Oxygen + Water → Citalopram aldehyde + Dimethylamine + Hydrogen peroxidedetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine.
Gene Name:
MAOA
Uniprot ID:
P21397
Molecular weight:
59681.27
Reactions
Citalopram + Oxygen + Water → Citalopram aldehyde + Dimethylamine + Hydrogen peroxidedetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
General function:
Involved in monooxygenase activity
Specific function:
Exhibits low testosterone 6-beta-hydroxylase activity.
Gene Name:
CYP3A43
Uniprot ID:
Q9HB55
Molecular weight:
57756.285
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Participates in the metabolism of an as-yet-unknown biologically active molecule that is a participant in eye development.
Gene Name:
CYP1B1
Uniprot ID:
Q16678
Molecular weight:
60845.33
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP2C18
Uniprot ID:
P33260
Molecular weight:
55710.075
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
May be involved in the metabolism of various pneumotoxicants including naphthalene. Is able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possesses no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. Bioactivates 3-methylindole (3MI) by dehydrogenation to the putative electrophile 3-methylene-indolenine.
Gene Name:
CYP2F1
Uniprot ID:
P24903
Molecular weight:
55500.64
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP4X1
Uniprot ID:
Q8N118
Molecular weight:
58874.62
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a coumarin 7-hydroxylase activity. Active in the metabolic activation of hexamethylphosphoramide, N,N-dimethylaniline, 2'-methoxyacetophenone, N-nitrosomethylphenylamine, and the tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Possesses phenacetin O-deethylation activity.
Gene Name:
CYP2A13
Uniprot ID:
Q16696
Molecular weight:
56687.095
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP4B1
Uniprot ID:
P13584
Molecular weight:
58990.64
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Not Available
Gene Name:
CYP4Z1
Uniprot ID:
Q86W10
Molecular weight:
59085.45
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the formation of aromatic C18 estrogens from C19 androgens.
Gene Name:
CYP19A1
Uniprot ID:
P11511
Molecular weight:
57882.48
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
General function:
Involved in monooxygenase activity
Specific function:
Has a potential importance for extrahepatic xenobiotic metabolism.
Gene Name:
CYP2S1
Uniprot ID:
Q96SQ9
Molecular weight:
55816.205
General function:
Involved in monooxygenase activity
Specific function:
This enzyme metabolizes arachidonic acid predominantly via a NADPH-dependent olefin epoxidation to all four regioisomeric cis-epoxyeicosatrienoic acids. One of the predominant enzymes responsible for the epoxidation of endogenous cardiac arachidonic acid pools.
Gene Name:
CYP2J2
Uniprot ID:
P51589
Molecular weight:
57610.165
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP2A7
Uniprot ID:
P20853
Molecular weight:
56424.735
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP1A1
Uniprot ID:
A0N0X8
Molecular weight:
58164.8
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP2D6
Uniprot ID:
Q6NWU0
Molecular weight:
55729.9

Transporters

General function:
Involved in neurotransmitter:sodium symporter activity
Specific function:
Serotonin transporter whose primary function in the central nervous system involves the regulation of serotonergic signaling via transport of serotonin molecules from the synaptic cleft back into the pre-synaptic terminal for re-utilization. Plays a key role in mediating regulation of the availability of serotonin to other receptors of serotonergic systems. Terminates the action of serotonin and recycles it in a sodium-dependent manner.
Gene Name:
SLC6A4
Uniprot ID:
P31645
Molecular weight:
70324.165