You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.

NOTICE: The ontology section is undergoing maintainance. If it is not visible on a metabocard page or does not include the expected information, please try again later! Thank you!

Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2006-05-22 14:17:42 UTC
Update Date2017-12-07 01:55:29 UTC
HMDB IDHMDB0005780
Secondary Accession Numbers
  • HMDB05780
  • HMDB11361
Metabolite Identification
Common NamePE(O-16:1(1Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
DescriptionPE(O-16:1(1Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a class of glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the SN-1 and SN-2 positions. fatty acids containing 16, 18 and 20 carbons are the most common. (LipidMAPS)PE(dm16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(dm16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Structure
Thumb
Synonyms
ValueSource
GPEtn(16:0P/22:6(4Z,7Z,10Z,13Z,16Z,19Z))ChEBI
PE(P-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))ChEBI
PE(P-16:0/22:6)ChEBI
1-(1-Enyl-palmitoyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamineHMDB
1-Alkenyl-2-acyl-glycerophosphoethanolamineHMDB
1-O-(1Z-Hexadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamineHMDB
GPEtn(16:0/22:6)HMDB
GPEtn(16:0/22:6n3)HMDB
GPEtn(16:0/22:6W3)HMDB
GPEtn(38:6)HMDB
PE(16:0/22:6)HMDB
PE(16:0/22:6N3)HMDB
PE(16:0/22:6W3)HMDB
PE(38:6)HMDB
PE(DM16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))HMDB
Phophatidylethanolamine(16:0/22:6)HMDB
Phophatidylethanolamine(16:0/22:6n3)HMDB
Phophatidylethanolamine(16:0/22:6W3)HMDB
Phophatidylethanolamine(38:6)HMDB
Chemical FormulaC43H74NO7P
Average Molecular Weight748.0239
Monoisotopic Molecular Weight747.520290239
IUPAC Name(2-aminoethoxy)[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(1Z)-hexadec-1-en-1-yloxy]propoxy]phosphinic acid
Traditional Name2-aminoethoxy(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(1Z)-hexadec-1-en-1-yloxy]propoxyphosphinic acid
CAS Registry NumberNot Available
SMILES
[H][C@@](CO\C=C/CCCCCCCCCCCCCC)(COP(O)(=O)OCCN)OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC
InChI Identifier
InChI=1S/C43H74NO7P/c1-3-5-7-9-11-13-15-17-19-20-21-22-23-24-26-28-30-32-34-36-43(45)51-42(41-50-52(46,47)49-39-37-44)40-48-38-35-33-31-29-27-25-18-16-14-12-10-8-6-4-2/h5,7,11,13,17,19,21-22,24,26,30,32,35,38,42H,3-4,6,8-10,12,14-16,18,20,23,25,27-29,31,33-34,36-37,39-41,44H2,1-2H3,(H,46,47)/b7-5-,13-11-,19-17-,22-21-,26-24-,32-30-,38-35-/t42-/m1/s1
InChI KeyWVGALBKSWOUIEZ-XNHMFJFDSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as 1-(1z-alkenyl),2-acylglycerophosphoethanolamines. These are glycerophosphoethanolamines that carry exactly one acyl chain attached to the glycerol moiety through an ester linkage at the O2-position, and one 1Z-alkenyl chain attached through an ether linkage at the O1-position.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphoethanolamines
Direct Parent1-(1Z-alkenyl),2-acylglycerophosphoethanolamines
Alternative Parents
Substituents
  • 1-(1z-alkenyl),2-acylglycerophosphoethanolamine
  • Glycerol vinyl ether
  • Phosphoethanolamine
  • Fatty acid ester
  • Dialkyl phosphate
  • Fatty acyl
  • Alkyl phosphate
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Primary amine
  • Primary aliphatic amine
  • Organic oxygen compound
  • Amine
  • Carbonyl group
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Disposition

Biological location:

  Cell and elements:

  Subcellular:

  Organ and components:

  Tissue and substructures:

Source:

Role

Biological role:

Industrial application:

Process

Naturally occurring process:

  Biological process:

    Cellular process:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility6.8e-05 g/LALOGPS
logP9.06ALOGPS
logP11.34ChemAxon
logS-7ALOGPS
pKa (Strongest Acidic)1.87ChemAxon
pKa (Strongest Basic)10ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area117.31 ŲChemAxon
Rotatable Bond Count38ChemAxon
Refractivity225.65 m³·mol⁻¹ChemAxon
Polarizability87 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-9022100200-594976f18eb9044bb0baView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0006-9031001000-a69406fa65734aa9a246View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0006-9081011000-551a07c20a03c4cc63d1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00mt-2367510900-ce70acab848803c4fc5cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-004l-9542100100-2a1ccb0a64ebaefc04a2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-01t9-9101000000-c8017a6d129b66c29bb6View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue Location
  • All Tissues
  • Brain
PathwaysNot Available
NameSMPDB/PathwhizKEGG
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood20.784 +/- 17.189 uMAdult (>18 years old)BothNormal (Upper Limit)Concentration data updated from parsing Nick's...
Blood0.98848 +/- 0.17696 uMAdult (>18 years old)BothNormal (Most Probable)Concentration data updated from parsing Nick's...
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB023769
KNApSAcK IDNot Available
Chemspider ID4446616
KEGG Compound IDC00350
BioCyc ID1-Alkenyl-2-acyl-glyceroPethamines
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID6548
PubChem Compound5283497
PDB IDNot Available
ChEBI ID90479
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 10 proteins. There are 43 proteins in total.

Enzymes

General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle.
Gene Name:
PLA2G5
Uniprot ID:
P39877
Molecular weight:
15674.065
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference.
Gene Name:
PLA2G2F
Uniprot ID:
Q9BZM2
Molecular weight:
23256.29
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G1B
Uniprot ID:
P04054
Molecular weight:
16359.535
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phospholipase A2 activity
Specific function:
Not known; does not seem to have catalytic activity.
Gene Name:
PLA2G12B
Uniprot ID:
Q9BX93
Molecular weight:
Not Available
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine.
Gene Name:
PLA2G10
Uniprot ID:
O15496
Molecular weight:
18153.04
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a preference for arachidonic-containing phospholipids.
Gene Name:
PLA2G2E
Uniprot ID:
Q9NZK7
Molecular weight:
15988.525
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in metabolic process
Specific function:
Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide-induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose-stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2-induced chemotaxis through regulation of F-actin polymerization at the pseudopods. Isoform ankyrin-iPLA2-1 and isoform ankyrin-iPLA2-2, which lack the catalytic domain, are probably involved in the negative regulation of iPLA2 activity.
Gene Name:
PLA2G6
Uniprot ID:
O60733
Molecular weight:
84092.635
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined.
Gene Name:
PLA2G2D
Uniprot ID:
Q9UNK4
Molecular weight:
16546.1
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in protein binding
Specific function:
May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity).
Gene Name:
PLD2
Uniprot ID:
O14939
Molecular weight:
104656.485
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]

Only showing the first 10 proteins. There are 43 proteins in total.