Hmdb loader
Survey
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2007-05-22 21:57:36 UTC
Update Date2022-03-07 02:49:31 UTC
HMDB IDHMDB0006292
Secondary Accession Numbers
  • HMDB0002325
  • HMDB02325
  • HMDB06292
Metabolite Identification
Common NameChenodeoxycholoyl-CoA
DescriptionChenodeoxycholoyl-CoA is bile acid Coenzyme A ester. In humans, bile acids conjugated with glycine and taurine are the major solutes in bile, and unconjugated bile acids are almost nondetectable in normal bile. Conjugated bile acids are less toxic and are more efficient promoters of intestinal absorption of dietary lipid than unconjugated bile acids. The synthesis of bile acid and amino acid conjugates in human liver is the result of two independent enzymatic reactions with a bile acid coenzyme A thioester intermediate formation of bile acid-CoA esters, considered the rate-limiting step in bile acid amidation and catalyzed by an ATP-dependent microsomal enzyme, bile acid-CoA synthetase (EC 6.2.1.7). In the second reaction, the thioester bond is cleaved, and an amide bond is formed between the bile acid and the amino acids glycine or taurine. The bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65) catalyzes this reaction in the cytosol prior to secretion into bile. In human liver the formation of bile acid-CoA thioesters is localized both to the microsomal fraction catalysed by an ATP-dependent synthetase and to the peroxisomal fraction catalysed by the thiolase in the last step of the beta-oxidative cleavage of the 5beta-cholestanoyl side chain. The highest specific amidation activity of both chenodeoxycholoyl-CoA is always found in the most peroxisome-rich subcellular fractions. (PMID: 2722825 , 10817395 , 11673457 , 10884298 ).
Structure
Data?1582752379
Synonyms
ValueSource
GPCho(36:5)HMDB
Phosphatidylcholine(36:5)HMDB
LecithinHMDB
1-Stearidonoyl-2-vaccenoyl-sn-glycero-3-phosphocholineHMDB
PC(36:5)HMDB
PC(18:4/18:1)HMDB
GPCho(18:4/18:1)HMDB
1-(6Z,9Z,12Z,15Z-Octadecatetraenoyl)-2-(11Z-octadecenoyl)-sn-glycero-3-phosphocholineHMDB
Phosphatidylcholine(18:4/18:1)HMDB
5'-{3-[(3R)-4-{[3-({2-[(3alpha,7alpha-dihydroxy-5beta-cholan-24-oyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}3'-phosphoadenosineHMDB
Chenodeoxycholoyl coenzyme AHMDB
Chemical FormulaC45H74N7O19P3S
Average Molecular Weight1142.091
Monoisotopic Molecular Weight1141.397303447
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[3-({2-[(2-{[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid
Traditional Name[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-2-[({[3-({2-[(2-{[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-3-hydroxy-2,2-dimethylpropoxy(hydroxy)phosphoryl]oxy(hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxyphosphonic acid
CAS Registry Number60731-52-4
SMILES
[H][C@@]1(CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1S/C45H74N7O19P3S/c1-24(27-7-8-28-34-29(11-14-45(27,28)5)44(4)13-10-26(53)18-25(44)19-30(34)54)6-9-33(56)75-17-16-47-32(55)12-15-48-41(59)38(58)43(2,3)21-68-74(65,66)71-73(63,64)67-20-31-37(70-72(60,61)62)36(57)42(69-31)52-23-51-35-39(46)49-22-50-40(35)52/h22-31,34,36-38,42,53-54,57-58H,6-21H2,1-5H3,(H,47,55)(H,48,59)(H,63,64)(H,65,66)(H2,46,49,50)(H2,60,61,62)/t24-,25+,26-,27-,28+,29+,30-,31-,34+,36-,37-,38?,42-,44+,45-/m1/s1
InChI KeyIIWDDMINEZBCTG-POZCYTSJSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as phosphatidylcholines. These are glycerophosphocholines in which the two free -OH are attached to one fatty acid each through an ester linkage.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphocholines
Direct ParentPhosphatidylcholines
Alternative Parents
Substituents
  • Diacylglycero-3-phosphocholine
  • Phosphocholine
  • Fatty acid ester
  • Dialkyl phosphate
  • Dicarboxylic acid or derivatives
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Fatty acyl
  • Quaternary ammonium salt
  • Tetraalkylammonium salt
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic nitrogen compound
  • Carbonyl group
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Organopnictogen compound
  • Amine
  • Organic salt
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Process
Role
Physical Properties
StateGas
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP1.41HANSCH,C ET AL. (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility1.01 g/LALOGPS
logP1.22ALOGPS
logP-3ChemAxon
logS-3ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count19ChemAxon
Hydrogen Donor Count11ChemAxon
Polar Surface Area404.09 ŲChemAxon
Rotatable Bond Count24ChemAxon
Refractivity268.84 m³·mol⁻¹ChemAxon
Polarizability113.69 ųChemAxon
Number of Rings7ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M-2H]-315.89830932474
DeepCCS[M+Na]+290.50630932474
AllCCS[M+H]+307.132859911
AllCCS[M+H-H2O]+307.832859911
AllCCS[M+NH4]+306.432859911
AllCCS[M+Na]+306.232859911
AllCCS[M-H]-262.632859911
AllCCS[M+Na-2H]-268.132859911
AllCCS[M+HCOO]-274.032859911

Predicted Kovats Retention Indices

Not Available
Spectra

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 10V, Positive-QTOFsplash10-000i-1900111000-49f063c429232551ee172017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 20V, Positive-QTOFsplash10-000i-0900215000-8d2226be8c0c4bc5d8492017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 40V, Positive-QTOFsplash10-000i-1900001000-7a0a8e03b96562805e532017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 10V, Negative-QTOFsplash10-00al-2902140300-27178d920f5623fe92292017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 20V, Negative-QTOFsplash10-001i-3901120100-6b56cd2f9088ae3e0e8e2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 40V, Negative-QTOFsplash10-057i-5900100000-5f68bcc57183d55aa9fc2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 10V, Negative-QTOFsplash10-0006-0900000000-f2029e50b149beb9f9f22021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 20V, Negative-QTOFsplash10-006x-2901201100-35d0be690cfa669a63452021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 40V, Negative-QTOFsplash10-00p3-7904802600-c387954862814720775d2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 10V, Positive-QTOFsplash10-006x-0900000000-46620c2f6efcaebe68a62021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 20V, Positive-QTOFsplash10-0079-2900000011-05d1a4743e5cbc0dc9bb2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Chenodeoxycholoyl-CoA 40V, Positive-QTOFsplash10-000i-0000019000-4efd57469a29c0b4117b2021-09-24Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-16Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53478855
PDB IDNot Available
ChEBI ID89422
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceKillenberg, Paul G.; Dukes, Diane F. Coenzyme A derivatives of bile acids - chemical synthesis, purification, and utilization in enzymic preparation of taurine conjugates. Journal of Lipid Research (1976), 17(5), 451-5.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Solaas K, Ulvestad A, Soreide O, Kase BF: Subcellular organization of bile acid amidation in human liver: a key issue in regulating the biosynthesis of bile salts. J Lipid Res. 2000 Jul;41(7):1154-62. [PubMed:10884298 ]
  2. Hunt MC, Solaas K, Kase BF, Alexson SE: Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J Biol Chem. 2002 Jan 11;277(2):1128-38. Epub 2001 Oct 22. [PubMed:11673457 ]
  3. Kase BF, Bjorkhem I: Peroxisomal bile acid-CoA:amino-acid N-acyltransferase in rat liver. J Biol Chem. 1989 Jun 5;264(16):9220-3. [PubMed:2722825 ]
  4. Solaas K, Sletta RJ, Soreide O, Kase BF: Presence of choloyl- and chenodeoxycholoyl-coenzyme A thioesterase activity in human liver. Scand J Clin Lab Invest. 2000 Apr;60(2):91-102. [PubMed:10817395 ]

Enzymes

General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Abolishes BNIP3-mediated apoptosis and mitochondrial damage.
Gene Name:
ACAA2
Uniprot ID:
P42765
Molecular weight:
41923.82
Reactions
Propionyl-CoA + Chenodeoxycholoyl-CoA → Coenzyme A + 3a,7a-Dihydroxy-5b-cholestanoyl-CoAdetails
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
ACAA1
Uniprot ID:
P09110
Molecular weight:
34664.46
Reactions
Propionyl-CoA + Chenodeoxycholoyl-CoA → Coenzyme A + 3a,7a-Dihydroxy-5b-cholestanoyl-CoAdetails
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
HADHB
Uniprot ID:
P55084
Molecular weight:
51293.955
Reactions
Propionyl-CoA + Chenodeoxycholoyl-CoA → Coenzyme A + 3a,7a-Dihydroxy-5b-cholestanoyl-CoAdetails
General function:
Involved in oxidoreductase activity
Specific function:
Mediates in vitro the transfer of all common phospholipids, cholesterol and gangliosides between membranes. May play a role in regulating steroidogenesis.
Gene Name:
SCP2
Uniprot ID:
P22307
Molecular weight:
34974.505
Reactions
Propionyl-CoA + Chenodeoxycholoyl-CoA → Coenzyme A + 3a,7a-Dihydroxy-5b-24-oxocholestanoyl-CoAdetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
Reactions
Chenodeoxycholoyl-CoA + Glycine → Chenodeoxycholic acid glycine conjugate + Coenzyme Adetails
Chenodeoxycholoyl-CoA + Taurine → Taurochenodesoxycholic acid + Coenzyme Adetails
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N-acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.
Gene Name:
ACOT8
Uniprot ID:
O14734
Molecular weight:
35914.02
Reactions
Chenodeoxycholic acid + Coenzyme A → Chenodeoxycholoyl-CoA + Waterdetails
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetase involved in bile acid metabolism. Proposed to catalyze the first step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi by activating them to their CoA thioesters. Seems to activate secondary bile acids entering the liver from the enterohepatic circulation. In vitro, also activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol.
Gene Name:
SLC27A5
Uniprot ID:
Q9Y2P5
Molecular weight:
75384.375
Reactions
Chenodeoxycholoyl-CoA + Adenosine monophosphate + Pyrophosphate → Chenodeoxycholic acid + Coenzyme A + Adenosine triphosphatedetails