You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Creation Date2007-05-23 15:45:00 UTC
Update Date2016-02-11 01:07:35 UTC
Secondary Accession Numbers
  • HMDB12186
Metabolite Identification
Common NameADP-glucose
DescriptionServes as the glycosyl donor for formation of bacterial glycogen, amylose in green algae, and amylopectin in higher plants.
Adenosine diphosphate glucoseChEBI
Adenosine diphosphoglucoseChEBI
Adenosine pyrophosphateglucoseChEBI
Adenosine diphosphoric acid glucoseGenerator
Adenosine 5'-(trihydrogen diphosphate) glucopyranosyl esterHMDB
Adenosine 5'-(trihydrogen diphosphate) p'-alpha-delta-glucopyranosyl esterHMDB
Adenosine 5'-(trihydrogen pyrophosphate) mono-D-glucosyl esterHMDB
Adenosine 5'-(trihydrogen pyrophosphate) mono-delta-glucosyl esterHMDB
Adenosine 5'-diphosphoglucoseHMDB
Adenosine 5'-pyrophosphate a-delta-glucosyl esterHMDB
Adenosine 5'-pyrophosphate alpha-D-glucosyl esterHMDB
Adenosine 5'-pyrophosphate alpha-delta-glucosyl esterHMDB
Adenosine 5'-pyrophosphate glucosyl esterHMDB
Adenosine 5'-pyrophosphate mono-D-glucosyl esterHMDB
Adenosine 5'-pyrophosphate mono-delta-glucosyl esterHMDB
Adenosine diphosphate D-glucoseHMDB
Adenosine pyrophosphate-glucoseHMDB
Chemical FormulaC16H25N5O15P2
Average Molecular Weight589.3417
Monoisotopic Molecular Weight589.082238179
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[hydroxy({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphoryl]oxy})phosphinic acid
Traditional Nameadp glucose
CAS Registry Number2140-58-1
InChI Identifier
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as purine nucleotide sugars. These are purine nucleotides bound to a saccharide derivative through the terminal phosphate group.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine nucleotide sugars
Direct ParentPurine nucleotide sugars
Alternative Parents
  • Purine nucleotide sugar
  • Purine ribonucleoside diphosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Oxane
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Secondary alcohol
  • Polyol
  • 1,2-diol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Primary amine
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
StatusExpected but not Quantified
  • Endogenous
  • Microbial
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Cytoplasm
Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility4.84 mg/mLALOGPS
pKa (Strongest Acidic)1.73ChemAxon
pKa (Strongest Basic)5ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count16ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area311.75 Å2ChemAxon
Rotatable Bond Count9ChemAxon
Refractivity117.09 m3·mol-1ChemAxon
Polarizability48.69 Å3ChemAxon
Number of Rings4ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0910520000-894488255e0d2059a6caView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0910000000-af7d8977d3d229ea73eeView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900000000-39c6318a5ada8cb3ebb4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001r-1901470000-134113735239a2586876View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-1901000000-48fb3c4c1d3e3f084d3dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0563-3900000000-f9f285dafe2da95e8009View in MoNA
Biological Properties
Cellular Locations
  • Cytoplasm
Biofluid LocationsNot Available
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01774
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB001211
KNApSAcK IDC00007354
Chemspider ID15642
KEGG Compound IDC00498
BiGG ID35161
Wikipedia LinkNot Available
NuGOwiki LinkHMDB06557
Metagene LinkHMDB06557
METLIN IDNot Available
PubChem Compound16500
ChEBI ID15751
Synthesis ReferenceTamura, Kiminori; Morozumi, Manami; Yoshino, Hiroshi; Noda, Yutaka; Suzuki, Morio. Nucleotide anhydrides. Ger. Offen. (1972), 16 pp. CODEN: GWXXBX DE 2038262 19720203 CAN 76:99993 AN 1972:99993
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Tiessen A, Nerlich A, Faix B, Hummer C, Fox S, Trafford K, Weber H, Weschke W, Geigenberger P: Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method. J Exp Bot. 2012 Mar;63(5):2071-87. doi: 10.1093/jxb/err408. Epub 2011 Dec 26. [22200665 ]
  2. Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Munoz FJ, Montero M, Diaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J: Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol. 2010 Oct;51(10):1674-93. doi: 10.1093/pcp/pcq126. Epub 2010 Aug 24. [20739303 ]
  3. Szecowka M, Osorio S, Obata T, Araujo WL, Rohrmann J, Nunes-Nesi A, Fernie AR: Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent. Plant Physiol. 2012 Dec;160(4):2227-38. doi: 10.1104/pp.112.204826. Epub 2012 Oct 12. [23064409 ]
  4. Uhlmann NK, Beckles DM: Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. J Appl Genet. 2010;51(4):431-47. doi: 10.1007/BF03208873. [21063061 ]
  5. Li J, Baroja-Fernandez E, Bahaji A, Munoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajus N, Almagro G, Sanchez-Lopez AM, Hidalgo M, Zamarbide M, Pozueta-Romero J: Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol. 2013 Feb;54(2):282-94. doi: 10.1093/pcp/pcs180. Epub 2013 Jan 3. [23292602 ]
  6. Bejar CM, Ballicora MA, Iglesias AA, Preiss J: ADPglucose pyrophosphorylase's N-terminus: structural role in allosteric regulation. Biochem Biophys Res Commun. 2006 Apr 28;343(1):216-21. Epub 2006 Mar 2. [16530732 ]
  7. Baroja-Fernandez E, Munoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J: Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 2009 Sep;50(9):1651-62. doi: 10.1093/pcp/pcp108. Epub 2009 Jul 16. [19608713 ]
  8. Haferkamp I: The diverse members of the mitochondrial carrier family in plants. FEBS Lett. 2007 May 25;581(12):2375-9. Epub 2007 Feb 26. [17321523 ]
  9. Comparot-Moss S, Denyer K: The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot. 2009;60(9):2481-92. doi: 10.1093/jxb/erp141. [19505928 ]
  10. Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Munoz FJ, Montero M, Diaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J: A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis. Plant Signal Behav. 2010 Dec;5(12):1638-41. Epub 2010 Dec 1. [21150257 ]
  11. Baroja-Fernandez E, Etxeberria E, Munoz FJ, Moran-Zorzano MT, Alonso-Casajus N, Gonzalez P, Pozueta-Romero J: An important pool of sucrose linked to starch biosynthesis is taken up by endocytosis in heterotrophic cells. Plant Cell Physiol. 2006 Apr;47(4):447-56. Epub 2006 Jan 24. [16434435 ]
  12. Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M: Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis. Plant Physiol. 2011 Apr;155(4):1723-34. doi: 10.1104/pp.110.168716. Epub 2010 Nov 29. [21115809 ]
  13. Wiedemuth K, Muller J, Kahlau A, Amme S, Mock HP, Grzam A, Hell R, Egle K, Beschow H, Humbeck K: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. J Plant Physiol. 2005 Nov;162(11):1226-36. [16323274 ]
  14. Nagai YS, Sakulsingharoj C, Edwards GE, Satoh H, Greene TW, Blakeslee B, Okita TW: Control of starch synthesis in cereals: metabolite analysis of transgenic rice expressing an up-regulated cytoplasmic ADP-glucose pyrophosphorylase in developing seeds. Plant Cell Physiol. 2009 Mar;50(3):635-43. doi: 10.1093/pcp/pcp021. Epub 2009 Feb 10. [19208694 ]
  15. Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C: Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J. 2003 Jul;1(4):259-70. [17163903 ]
  16. Moran-Zorzano MT, Alonso-Casajus N, Munoz FJ, Viale AM, Baroja-Fernandez E, Eydallin G, Pozueta-Romero J: Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella. FEBS Lett. 2007 Sep 18;581(23):4423-9. Epub 2007 Aug 15. [17719035 ]
  17. Smith AM: Prospects for increasing starch and sucrose yields for bioethanol production. Plant J. 2008 May;54(4):546-58. doi: 10.1111/j.1365-313X.2008.03468.x. [18476862 ]
  18. Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M: Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J. 2006 Jul 1;397(1):139-48. [16551270 ]
  19. Eydallin G, Moran-Zorzano MT, Munoz FJ, Baroja-Fernandez E, Montero M, Alonso-Casajus N, Viale AM, Pozueta-Romero J: An Escherichia coli mutant producing a truncated inactive form of GlgC synthesizes glycogen: further evidences for the occurrence of various important sources of ADPglucose in enterobacteria. FEBS Lett. 2007 Sep 18;581(23):4417-22. Epub 2007 Aug 15. [17719034 ]