You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2007-07-11 09:18:48 UTC
Update Date2013-02-09 00:15:11 UTC
HMDB IDHMDB06709
Secondary Accession NumbersNone
Metabolite Identification
Common NameUbiquinone-2
DescriptionUbiquinone-2 is a member of the chemical class known as Polyprenylbenzoquinones. These are compounds containing a polyisoprene chain attached to a quinone at the second ring position. Ubiquione-2 has just 2 isoprene units. Normally in humans it has 10. Ubiquinone-2 is an intermediate in the synthesis of Ubiquionone 10. Ubiquionone is involved in cellular respiration. It is fat-soluble and is therefore mobile in cellular membranes; it plays a unique role in the electron transport chain (ETC). In the inner bacterial membrane, electrons from NADH and succinate pass through the ETC to the oxygen, which is then reduced to water. The transfer of electrons through ETC results in the pumping of H+ across the membrane creating a proton gradient across the membrane, which is used by ATP synthase (located on the membrane) to generate ATP.
Structure
Thumb
Synonyms
  1. 2,3-Dimethoxy-5-geranyl-6-methyl-1,4-benzoquinone
  2. 2-(3,7-Dimethyl-2,6-octadienyl)-5,6-dimethoxy-3-methyl- p-Benzoquinone
  3. 2-(3,7-Dimethyl-2,6-octadienyl)-5,6-dimethoxy-3-methyl-2,5-Cyclohexadiene-1,4-dione
  4. 2-[(2E)-3,7-Dimethyl-2,6-octadienyl]-5,6-dimethoxy-3-methyl- p-Benzoquinone
  5. Coenzyme Q2
  6. Q 2
  7. Ubiquinone 2
  8. Ubiquinone Q2
Chemical FormulaC19H26O4
Average Molecular Weight318.4073
Monoisotopic Molecular Weight318.18310932
IUPAC Name2-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione
Traditional Nameubiquinone 10
CAS Registry Number606-06-4
SMILES
COC1=C(OC)C(=O)C(C\C=C(/C)CCC=C(C)C)=C(C)C1=O
InChI Identifier
InChI=1S/C19H26O4/c1-12(2)8-7-9-13(3)10-11-15-14(4)16(20)18(22-5)19(23-6)17(15)21/h8,10H,7,9,11H2,1-6H3/b13-10+
InChI KeySQQWBSBBCSFQGC-JLHYYAGUSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassAliphatic Homomonocyclic Compounds
ClassBenzoquinones
Sub ClassN/A
Other Descriptors
  • Aliphatic Homomonocyclic Compounds
  • a ubiquinone(Cyc)
Substituents
  • Isoprene
  • Ketone
Direct ParentBenzoquinones
Ontology
StatusExpected and Not Quantified
Origin
  • Endogenous
BiofunctionNot Available
ApplicationNot Available
Cellular locations
  • Membrane (predicted from logP)
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.01ALOGPS
logP3.75ALOGPS
logP3.88ChemAxon
logS-4.5ALOGPS
pKa (Strongest Basic)-4.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area52.6 Å2ChemAxon
Rotatable Bond Count7ChemAxon
Refractivity96.18 m3·mol-1ChemAxon
Polarizability36.45 Å3ChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Membrane (predicted from logP)
Biofluid LocationsNot Available
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB024036
KNApSAcK IDNot Available
Chemspider ID4444053
KEGG Compound IDC00399
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB06709
Metagene LinkHMDB06709
METLIN IDNot Available
PubChem Compound5280346
PDB IDUQ2
ChEBI ID46372
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Forsmark-Andree P, Lee CP, Dallner G, Ernster L: Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med. 1997;22(3):391-400. Pubmed: 8981030

Only showing the first 50 proteins. There are 56 proteins in total.

Enzymes

General function:
Involved in oxidation reduction
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND1
Uniprot ID:
P03886
Molecular weight:
35660.055
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in NADH dehydrogenase activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB1
Uniprot ID:
O75438
Molecular weight:
6961.2
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS2
Uniprot ID:
O75306
Molecular weight:
51851.59
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHC
Uniprot ID:
Q99643
Molecular weight:
16650.185
Reactions
Ubiquinone-2 + Succinic acid → QH2 + Fumaric aciddetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA12
Uniprot ID:
Q9UI09
Molecular weight:
17114.4
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA1
Uniprot ID:
O15239
Molecular weight:
8072.3
General function:
Not Available
Specific function:
Not Available
Gene Name:
NDUFA4L2
Uniprot ID:
Q9NRX3
Molecular weight:
9965.6
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA3
Uniprot ID:
O95167
Molecular weight:
9278.8
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA8
Uniprot ID:
P51970
Molecular weight:
20104.9
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA4
Uniprot ID:
O00483
Molecular weight:
9369.8
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND4L
Uniprot ID:
P03901
Molecular weight:
10741.005
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in protein transporter activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA11
Uniprot ID:
Q86Y39
Molecular weight:
14852.0
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS4
Uniprot ID:
O43181
Molecular weight:
20107.8
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND5
Uniprot ID:
P03915
Molecular weight:
67025.67
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS3
Uniprot ID:
O75489
Molecular weight:
30241.245
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS5
Uniprot ID:
O43920
Molecular weight:
12517.4
General function:
Involved in oxidoreductase activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFV2
Uniprot ID:
P19404
Molecular weight:
27391.36
General function:
Involved in ATP binding
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA10
Uniprot ID:
O95299
Molecular weight:
40750.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA6
Uniprot ID:
P56556
Molecular weight:
17870.7
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB4
Uniprot ID:
O95168
Molecular weight:
15208.4
General function:
Involved in electron carrier activity
Specific function:
Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor.
Gene Name:
SDHA
Uniprot ID:
P31040
Molecular weight:
72690.975
Reactions
Ubiquinone-2 + Succinic acid → QH2 + Fumaric aciddetails
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone.
Gene Name:
NDUFS8
Uniprot ID:
O00217
Molecular weight:
23704.795
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND2
Uniprot ID:
P03891
Molecular weight:
38960.47
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA7
Uniprot ID:
O95182
Molecular weight:
12551.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA2
Uniprot ID:
O43678
Molecular weight:
10921.4
General function:
Involved in electron carrier activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized.
Gene Name:
NDUFS1
Uniprot ID:
P28331
Molecular weight:
67523.595
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB5
Uniprot ID:
O43674
Molecular weight:
21750.0
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFC2
Uniprot ID:
O95298
Molecular weight:
14187.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB3
Uniprot ID:
O43676
Molecular weight:
11401.9
General function:
Involved in NADH dehydrogenase activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB7
Uniprot ID:
P17568
Molecular weight:
16401.8
General function:
Involved in acyl carrier activity
Specific function:
Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain
Gene Name:
NDUFAB1
Uniprot ID:
O14561
Molecular weight:
17417.1
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA5
Uniprot ID:
Q16718
Molecular weight:
13458.6
General function:
Involved in electron-transferring-flavoprotein dehydrogenase activity
Specific function:
Accepts electrons from ETF and reduces ubiquinone.
Gene Name:
ETFDH
Uniprot ID:
Q16134
Molecular weight:
68494.96
General function:
Involved in catalytic activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFA9
Uniprot ID:
Q16795
Molecular weight:
42509.2
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND4
Uniprot ID:
P03905
Molecular weight:
51580.26
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in iron ion binding
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (By similarity).
Gene Name:
SDHD
Uniprot ID:
O14521
Molecular weight:
17042.82
Reactions
Ubiquinone-2 + Succinic acid → QH2 + Fumaric aciddetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFS7
Uniprot ID:
O75251
Molecular weight:
23563.3
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND3
Uniprot ID:
P03897
Molecular weight:
13185.87
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
NDUFV1
Uniprot ID:
P49821
Molecular weight:
49867.66
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFB9
Uniprot ID:
Q9Y6M9
Molecular weight:
21830.7
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Gene Name:
MT-ND6
Uniprot ID:
P03923
Molecular weight:
18622.045
Reactions
QH2 + Acceptor → Ubiquinone-2 + Reduced acceptordetails
General function:
Involved in ATP binding
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in CARD15-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes
Gene Name:
NDUFA13
Uniprot ID:
Q9P0J0
Molecular weight:
16698.2
General function:
Involved in electron carrier activity
Specific function:
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone
Gene Name:
NDUFS6
Uniprot ID:
O75380
Molecular weight:
13711.5
General function:
Involved in electron carrier activity
Specific function:
Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHB
Uniprot ID:
P21912
Molecular weight:
31629.365
Reactions
Ubiquinone-2 + Succinic acid → QH2 + Fumaric aciddetails
General function:
Involved in methyltransferase activity
Specific function:
Not Available
Gene Name:
COQ3
Uniprot ID:
Q9NZJ6
Molecular weight:
41053.76
Reactions
2-Polyprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone + S-Adenosylmethionine → Ubiquinone-2 + S-Adenosylhomocysteinedetails
General function:
Involved in catalytic activity
Specific function:
This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex
Gene Name:
UQCRC2
Uniprot ID:
P22695
Molecular weight:
48442.6
General function:
Involved in ubiquinol-cytochrome-c reductase activity
Specific function:
This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit interacts with cytochrome c1
Gene Name:
UQCR10
Uniprot ID:
Q9UDW1
Molecular weight:
7308.4
General function:
Involved in catalytic activity
Specific function:
This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1
Gene Name:
UQCRC1
Uniprot ID:
P31930
Molecular weight:
52645.3
General function:
Involved in ubiquinol-cytochrome-c reductase activity
Specific function:
This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This component is involved in redox-linked proton pumping
Gene Name:
UQCRB
Uniprot ID:
P14927
Molecular weight:
13530.3
General function:
Involved in oxidoreductase activity
Specific function:
Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The transit peptide of the Rieske protein seems to form part of the bc1 complex and is considered to be the subunit 11/IX of that complex (By similarity).
Gene Name:
UQCRFS1
Uniprot ID:
P47985
Molecular weight:
29667.695

Only showing the first 50 proteins. There are 56 proteins in total.