You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2008-09-12 01:12:59 UTC
Update Date2013-02-09 00:15:41 UTC
HMDB IDHMDB07009
Secondary Accession NumbersNone
Metabolite Identification
Common NameDG(14:0/14:1(9Z)/0:0)
DescriptionDG(14:0/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:0/14:1(9Z)/0:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
Structure
Thumb
Synonyms
  1. 1-Myristoyl-2-myristoleoyl-sn-glycerol
  2. DAG(14:0/14:1)
  3. DAG(14:0/14:1n5)
  4. DAG(14:0/14:1w5)
  5. DAG(28:1)
  6. DG(14:0/14:1)
  7. DG(14:0/14:1n5)
  8. DG(14:0/14:1w5)
  9. DG(28:1)
  10. Diacylglycerol
  11. Diacylglycerol(14:0/14:1)
  12. Diacylglycerol(14:0/14:1n5)
  13. Diacylglycerol(14:0/14:1w5)
  14. Diacylglycerol(28:1)
  15. Diglyceride
Chemical FormulaC31H58O5
Average Molecular Weight510.7892
Monoisotopic Molecular Weight510.428424966
IUPAC Name(2S)-1-hydroxy-3-(tetradecanoyloxy)propan-2-yl (9Z)-tetradec-9-enoate
Traditional IUPAC Name(2S)-1-hydroxy-3-(tetradecanoyloxy)propan-2-yl (9Z)-tetradec-9-enoate
CAS Registry NumberNot Available
SMILES
[H][C@](CO)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCC\C=C/CCCC
InChI Identifier
InChI=1S/C31H58O5/c1-3-5-7-9-11-13-15-17-19-21-23-25-30(33)35-28-29(27-32)36-31(34)26-24-22-20-18-16-14-12-10-8-6-4-2/h10,12,29,32H,3-9,11,13-28H2,1-2H3/b12-10-/t29-/m0/s1
InChI KeyYXMZUGRMRIHNJM-YFILLSJLSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassGlycerolipids
Sub ClassDiacylglycerols
Other Descriptors
  • Aliphatic Acyclic Compounds
Substituents
  • Acyclic Alkene
  • Carboxylic Acid Ester
  • Dicarboxylic Acid Derivative
  • Fatty Acid Ester
  • Primary Alcohol
Direct ParentDiacylglycerols
Ontology
StatusExpected and Not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Energy source
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane component
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
water solubility3.230E-05 g/LALOGPS
logP9.02ALOGPS
logP9.86ChemAxon
logS-7.2ALOGPS
pKa (strongest acidic)14.58ChemAxon
pKa (strongest basic)-3ChemAxon
physiological charge0ChemAxon
hydrogen acceptor count3ChemAxon
hydrogen donor count1ChemAxon
polar surface area72.83ChemAxon
rotatable bond count29ChemAxon
refractivity150.41ChemAxon
polarizability64.98ChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue Location
  • All Tissues
PathwaysNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0.022778043 +/- 0.011530945 uMAdult (>18 years old)BothNormal (Most Probable)Calculated using MetaboAnalyst
Blood0.533333333 +/- 0.115470054 uMAdult (>18 years old)BothNormal (Upper Limit)Calculated using MetaboAnalyst
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB024203
KNApSAcK IDNot Available
Chemspider ID24765843
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB07009
Metagene LinkHMDB07009
METLIN IDNot Available
PubChem Compound53477948
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 50 proteins. There are 130 proteins in total.

Enzymes

General function:
Involved in diacylglycerol kinase activity
Specific function:
Phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). May regulate the activity of protein kinase C by controlling the balance between these two signaling lipids. Activated in the nucleus in response to alpha-thrombin and nerve growth factor. May be involved in cAMP- induced activation of NR5A1 and subsequent steroidogenic gene transcription by delivering PA as ligand for NR5A1. Acts synergistically with NR5A1 on CYP17 transcriptional activity
Gene Name:
DGKQ
Uniprot ID:
P52824
Molecular weight:
101154.0
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
PNLIP
Uniprot ID:
P16233
Molecular weight:
51156.48
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB1
Uniprot ID:
Q9NQ66
Molecular weight:
138565.805
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This form has a role in retina signal transduction.
Gene Name:
PLCB4
Uniprot ID:
Q15147
Molecular weight:
136105.065
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB2
Uniprot ID:
Q00722
Molecular weight:
134023.21
General function:
Involved in diacylglycerol kinase activity
Specific function:
Reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid
Gene Name:
DGKG
Uniprot ID:
P49619
Molecular weight:
89095.3
General function:
Involved in catalytic activity
Specific function:
Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin.
Gene Name:
LIPC
Uniprot ID:
P11150
Molecular weight:
55914.1
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB3
Uniprot ID:
Q01970
Molecular weight:
138797.725
General function:
Involved in catalytic activity
Specific function:
May function as inhibitor of dietary triglyceride digestion. Lacks detectable lipase activity towards triglycerides, diglycerides, phosphatidylcholine, galactolipids or cholesterol esters (in vitro) (By similarity).
Gene Name:
PNLIPRP1
Uniprot ID:
P54315
Molecular weight:
Not Available
General function:
Involved in phosphoinositide phospholipase C activity
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling.
Gene Name:
PLCG2
Uniprot ID:
P16885
Molecular weight:
147868.67
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is PA > C-1-P > LPA > S-1-P.
Gene Name:
PPAP2C
Uniprot ID:
O43688
Molecular weight:
32573.435
General function:
Involved in metabolic process
Specific function:
Multifunctional enzyme which has both triacylglycerol lipase and acylglycerol O-acyltransferase activities.
Gene Name:
PNPLA3
Uniprot ID:
Q9NST1
Molecular weight:
52864.64
General function:
Involved in diacylglycerol kinase activity
Specific function:
Upon cell stimulation converts the second messenger diacylglycerol into phosphatidate, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity
Gene Name:
DGKA
Uniprot ID:
P23743
Molecular weight:
82629.5
General function:
Involved in diacylglycerol kinase activity
Specific function:
Isoform 2 may be involved in cell growth and tumorigenesis. Involved in clathrin-dependent endocytosis
Gene Name:
DGKD
Uniprot ID:
Q16760
Molecular weight:
134524.2
General function:
Involved in diacylglycerol kinase activity
Specific function:
Highly selective for arachidonate-containing species of diacylglycerol (DAG). May terminate signals transmitted through arachidonoyl-DAG or may contribute to the synthesis of phospholipids with defined fatty acid composition
Gene Name:
DGKE
Uniprot ID:
P52429
Molecular weight:
63926.6
General function:
Involved in lipid metabolic process
Specific function:
Not Available
Gene Name:
LIPF
Uniprot ID:
P07098
Molecular weight:
45237.375
General function:
Involved in catalytic activity
Specific function:
Broad-specificity phosphohydrolase that dephosphorylates exogenous bioactive glycerolipids and sphingolipids. Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). Pivotal regulator of lysophosphatidic acid (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in platelets, which terminates signaling actions of LPA. May control circulating, and possibly also regulate localized, LPA levels resulting from platelet activation. It has little activity towards ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA > PA > S-1-P > C-1-P. It's down-regulation may contribute to the development of colon adenocarcinoma.
Gene Name:
PPAP2A
Uniprot ID:
O14494
Molecular weight:
32155.715
General function:
Involved in diacylglycerol kinase activity
Specific function:
Exhibits high phosphorylation activity for long-chain diacylglycerols
Gene Name:
DGKB
Uniprot ID:
Q9Y6T7
Molecular weight:
90594.7
General function:
Involved in catalytic activity
Specific function:
Has phospholipase and triglyceride lipase activities. Hydrolyzes high density lipoproteins (HDL) more efficiently than other lipoproteins. Binds heparin.
Gene Name:
LIPG
Uniprot ID:
Q9Y5X9
Molecular weight:
56794.275
General function:
Involved in diacylglycerol kinase activity
Specific function:
ATP + 1,2-diacylglycerol = ADP + 1,2-diacyl- sn-glycerol 3-phosphate
Gene Name:
DGKI
Uniprot ID:
O75912
Molecular weight:
116996.2
General function:
Lipid transport and metabolism
Specific function:
Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.
Gene Name:
CEL
Uniprot ID:
P19835
Molecular weight:
79666.385
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions.
Gene Name:
PPAP2B
Uniprot ID:
O14495
Molecular weight:
35115.61
General function:
Involved in diacylglycerol O-acyltransferase activity
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders.
Gene Name:
DGAT1
Uniprot ID:
O75907
Molecular weight:
55277.735
General function:
Involved in calcium ion binding
Specific function:
Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, FGFR1, FGFR2, FGFR3 and FGFR4. Plays a role in actin reorganization and cell migration.
Gene Name:
PLCG1
Uniprot ID:
P19174
Molecular weight:
148658.92
General function:
Involved in catalytic activity
Specific function:
Lipase with broad substrate specificity. Can hydrolyze both phospholipids and galactolipids. Acts preferentially on monoglycerides, phospholipids and galactolipids. Contributes to milk fat hydrolysis.
Gene Name:
PNLIPRP2
Uniprot ID:
P54317
Molecular weight:
52077.475
General function:
Involved in diacylglycerol kinase activity
Specific function:
Displays a strong preference for 1,2-diacylglycerols over 1,3-diacylglycerols, but lacks substrate specificity among molecular species of long chain diacylglycerols. Isoform 2 but not isoform 1 regulates RASGRP1 activity
Gene Name:
DGKZ
Uniprot ID:
Q13574
Molecular weight:
124127.3
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. Essential for trophoblast and placental development.
Gene Name:
PLCD1
Uniprot ID:
P51178
Molecular weight:
88134.23
General function:
Involved in catalytic activity
Specific function:
The primary function of this lipase is the hydrolysis of triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium (By similarity).
Gene Name:
LPL
Uniprot ID:
P06858
Molecular weight:
53162.07
General function:
Involved in galactosylceramide sulfotransferase activity
Specific function:
Catalyzes the sulfation of membrane glycolipids. Seems to prefer beta-glycosides at the non-reducing termini of sugar chains attached to a lipid moiety. Catalyzes the synthesis of galactosylceramide sulfate (sulfatide), a major lipid component of the myelin sheath and of monogalactosylalkylacylglycerol sulfate (seminolipid), present in spermatocytes (By similarity). Also acts on lactosylceramide, galactosyl 1-alkyl-2-sn-glycerol and galactosyl diacylglycerol (in vitro).
Gene Name:
GAL3ST1
Uniprot ID:
Q99999
Molecular weight:
48763.63
General function:
Involved in hydrolase activity
Specific function:
In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production.
Gene Name:
LIPE
Uniprot ID:
Q05469
Molecular weight:
116596.715
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Provides CDP-diacylglycerol an important precursor for the synthesis of phosphatidylinositol, phosphatidylglycerol, and cardiolipin.
Gene Name:
CDS2
Uniprot ID:
O95674
Molecular weight:
51417.5
General function:
Involved in catalytic activity
Specific function:
Controls phosphatidylcholine synthesis.
Gene Name:
PCYT1A
Uniprot ID:
P49585
Molecular weight:
41730.67
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Provides CDP-diacylglycerol an important precursor for the synthesis of phosphatidylinositol (PtdIns), phosphatidylglycerol, and cardiolipin. Overexpression may amplify cellular signaling responses from cytokines. May also play an important role in the signal transduction mechanism of retina and neural cells.
Gene Name:
CDS1
Uniprot ID:
Q92903
Molecular weight:
53303.57
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Required for cell growth
Gene Name:
SGMS2
Uniprot ID:
Q8NHU3
Molecular weight:
42279.8
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Catalyzes the biosynthesis of phosphatidylinositol (PtdIns) as well as PtdIns:inositol exchange reaction. May thus act to reduce an excessive cellular PtdIns content. The exchange activity is due to the reverse reaction of PtdIns synthase and is dependent on CMP, which is tightly bound to the enzyme.
Gene Name:
CDIPT
Uniprot ID:
O14735
Molecular weight:
23538.47
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Suppresses BAX-mediated apoptosis and also prevents cell death in response to stimuli such as hydrogen peroxide, osmotic stress, elevated temperature and exogenously supplied sphingolipids. May protect against cell death by reversing the stress-inducible increase in levels of proapoptotic ceramide. Required for cell growth
Gene Name:
SGMS1
Uniprot ID:
Q86VZ5
Molecular weight:
49207.3
General function:
Involved in protein binding
Specific function:
Guanine nucleotide exchange factor (GEF) for Rap1A, Rap1B and Rap2B GTPases. Does not interact with cAMP or cGMP
Gene Name:
RAPGEF2
Uniprot ID:
Q9Y4G8
Molecular weight:
167415.5
General function:
Involved in intracellular signaling pathway
Specific function:
Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. Part of the Ras-dependent signaling pathway from receptors to the nucleus. Protects cells from apoptosis mediated by STK3
Gene Name:
RAF1
Uniprot ID:
P04049
Molecular weight:
73051.0
General function:
Involved in protein serine/threonine kinase activity
Specific function:
PKC is activated by diacylglycerol which in turn phosphorylates a range of cellular proteins. PKC also serves as the receptor for phorbol esters, a class of tumor promoters
Gene Name:
PRKCA
Uniprot ID:
P17252
Molecular weight:
76763.5
General function:
Involved in intracellular signaling pathway
Specific function:
Involved in the transduction of mitogenic signals from the cell membrane to the nucleus
Gene Name:
ARAF
Uniprot ID:
P10398
Molecular weight:
67584.8
General function:
Involved in protein serine/threonine kinase activity
Specific function:
Required for KIF14 localization to the central spindle and midbody. May play a role in cytokinesis. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues. Plays an important role in the regulation of cytokinesis and the development of the central nervous system
Gene Name:
CIT
Uniprot ID:
O14578
Molecular weight:
231428.9
General function:
Involved in protein serine/threonine kinase activity
Specific function:
Calcium-activated and phospholipid-dependent serine/threonine-protein kinase involved in various processes such as regulation of the B-cell receptor (BCR) signalosome, apoptosis and transcription regulation. Plays a key role in B-cell activation and function by regulating BCR-induced NF-kappa-B activation and B-cell suvival. Required for recruitment and activation of the IKK kinase to lipid rafts and mediates phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser- 652', leading to activate the NF-kappa-B signaling. Involved in apoptosis following oxidative damage:in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. Also involved in triglyceride homeostasis. Serves as the receptor for phorbol esters, a class of tumor promoters
Gene Name:
PRKCB
Uniprot ID:
P05771
Molecular weight:
76868.4
General function:
Involved in protein serine/threonine kinase activity
Specific function:
PKC is activated by diacylglycerol which in turn phosphorylates a range of cellular proteins. PKC also serves as the receptor for phorbol esters, a class of tumor promoters. Subunit of a quaternary complex that plays a central role in epithelial cell polarization
Gene Name:
PRKCZ
Uniprot ID:
Q05513
Molecular weight:
67659.3
General function:
Involved in protein serine/threonine kinase activity
Specific function:
Calcium-independent, phospholipid-dependent, serine- and threonine-specific kinase. May play a role in the secretory response to nutrients. Involved in cell polarization processes and the formation of epithelial tight junctions. Implicated in the activation of several signaling pathways including Ras, c-Src and NF-kappa-B pathways. Functions in both pro- and anti-apoptotic pathways. Functions in the RAC1/ERK signaling required for transformed growth. Plays a role in microtubule dynamics through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs)
Gene Name:
PRKCI
Uniprot ID:
P41743
Molecular weight:
68261.9
General function:
Involved in protein serine/threonine kinase activity
Specific function:
Phosphorylates and activates DAPK3, which then regulates myosin light chain phosphatase through phosphorylation of MYPT1 thereby regulating the assembly of the actin cytoskeleton, cell migration, invasiveness of tumor cells, smooth muscle contraction and neurite outgrowth. Required for centromere positioning and centromere-dependent exit from mitosis. Necessary for apoptotic membrane blebbing
Gene Name:
ROCK1
Uniprot ID:
Q13464
Molecular weight:
158173.5
General function:
Involved in intracellular signaling pathway
Specific function:
Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress through activation of NF-kappa-B
Gene Name:
PRKD1
Uniprot ID:
Q15139
Molecular weight:
101703.3
General function:
Involved in protein serine/threonine kinase activity
Specific function:
PKC is activated by diacylglycerol which in turn phosphorylates a range of cellular proteins. PKC also serves as the receptor for phorbol esters, a class of tumor promoters
Gene Name:
PRKCG
Uniprot ID:
P05129
Molecular weight:
78447.2
General function:
Involved in protein serine/threonine kinase activity
Specific function:
Regulates the assembly of the actin cytoskeleton. Promotes formation of stress fibers and of focal adhesion complexes. Plays a role in smooth muscle contraction
Gene Name:
ROCK2
Uniprot ID:
O75116
Molecular weight:
160898.6
General function:
Involved in protein serine/threonine kinase activity
Specific function:
This is calcium-independent, phospholipid-dependent, serine- and threonine-specific enzyme. PKC is activated by diacylglycerol which in turn phosphorylates a range of cellular proteins. PKC also serves as the receptor for phorbol esters, a class of tumor promoters. May play a role in antigen-dependent control of B-cell function. Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin
Gene Name:
PRKCD
Uniprot ID:
Q05655
Molecular weight:
77504.4
General function:
Involved in intracellular signaling pathway
Specific function:
Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress
Gene Name:
PRKD3
Uniprot ID:
O94806
Molecular weight:
100469.8

Only showing the first 50 proteins. There are 130 proteins in total.