You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2008-09-12 01:59:41 UTC
Update Date2013-02-09 00:23:14 UTC
HMDB IDHMDB09783
Secondary Accession NumbersNone
Metabolite Identification
Common NamePI(16:0/18:1(9Z))
DescriptionPI(16:0/18:1(9Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
Structure
Thumb
Synonyms
  1. 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-myo-inositol)
  2. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoinositol
  3. Phosphatidylinositol(16:0/18:1)
  4. Phosphatidylinositol(16:0/18:1n9)
  5. Phosphatidylinositol(16:0/18:1w9)
  6. Phosphatidylinositol(34:1)
  7. PI(16:0/18:1)
  8. PI(16:0/18:1n9)
  9. PI(16:0/18:1w9)
  10. PI(34:1)
  11. PIno(16:0/18:1)
  12. PIno(16:0/18:1n9)
  13. PIno(16:0/18:1w9)
  14. PIno(34:1)
Chemical FormulaC43H81O13P
Average Molecular Weight837.0692
Monoisotopic Molecular Weight836.54147919
IUPAC Name[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid
Traditional IUPAC Name(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphinic acid
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCCCCC(=O)OC[C@]([H])(COP(O)(=O)O[C@H]1C(O)C(O)C(O)[C@@H](O)C1O)OC(=O)CCCCCCC\C=C/CCCCCCCC
InChI Identifier
InChI=1S/C43H81O13P/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-37(45)55-35(34-54-57(51,52)56-43-41(49)39(47)38(46)40(48)42(43)50)33-53-36(44)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h17-18,35,38-43,46-50H,3-16,19-34H2,1-2H3,(H,51,52)/b18-17-/t35-,38?,39-,40?,41?,42?,43-/m1/s1
InChI KeyPDLAMJKMOKWLAJ-AGORXRROSA-N
Chemical Taxonomy
KingdomOrganic Compounds
Super ClassLipids
ClassGlycerophospholipids
Sub ClassGlycerophosphoinositols
Other Descriptors
  • Aliphatic Homomonocyclic Compounds
Substituents
  • 1,2 Diol
  • Carboxylic Acid Ester
  • Cyclic Alcohol
  • Cyclitol Derivative
  • Cyclohexane
  • Dicarboxylic Acid Derivative
  • Fatty Acid Ester
  • Inositol Phosphate
  • Organic Hypophosphite
  • Organic Phosphite
  • Phosphoric Acid Ester
  • Secondary Alcohol
Direct ParentPhosphatidylinositols
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Energy source
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane component
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
water solubility9.110E-04 g/LALOGPS
logP7.28ALOGPS
logP9.52ChemAxon
logS-6ALOGPS
pKa (strongest acidic)1.83ChemAxon
pKa (strongest basic)-3.6ChemAxon
physiological charge-1ChemAxon
hydrogen acceptor count9ChemAxon
hydrogen donor count6ChemAxon
polar surface area209.51ChemAxon
rotatable bond count39ChemAxon
refractivity220.89ChemAxon
polarizability97.72ChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
Tissue Location
  • All Tissues
  • Brain
Pathways
NameSMPDB LinkKEGG Link
Phosphatidylinositol Phosphate MetabolismSMP00463map00562
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified1.78 +/- 0.14 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB026973
KNApSAcK IDNot Available
Chemspider ID24767668
KEGG Compound IDC00626
BioCyc IDPhosphatidylinositols
BiGG IDNot Available
Wikipedia LinkLecithin
NuGOwiki LinkHMDB09783
Metagene LinkHMDB09783
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 50 proteins. There are 80 proteins in total.

Enzymes

General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB1
Uniprot ID:
Q9NQ66
Molecular weight:
138565.805
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This form has a role in retina signal transduction.
Gene Name:
PLCB4
Uniprot ID:
Q15147
Molecular weight:
136105.065
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB2
Uniprot ID:
Q00722
Molecular weight:
134023.21
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB3
Uniprot ID:
Q01970
Molecular weight:
138797.725
General function:
Involved in phosphoinositide phospholipase C activity
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling.
Gene Name:
PLCG2
Uniprot ID:
P16885
Molecular weight:
147868.67
General function:
Involved in calcium ion binding
Specific function:
Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, FGFR1, FGFR2, FGFR3 and FGFR4. Plays a role in actin reorganization and cell migration.
Gene Name:
PLCG1
Uniprot ID:
P19174
Molecular weight:
148658.92
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. Essential for trophoblast and placental development.
Gene Name:
PLCD1
Uniprot ID:
P51178
Molecular weight:
88134.23
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGC
Uniprot ID:
Q92535
Molecular weight:
33582.18
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11C
Uniprot ID:
Q8NB49
Molecular weight:
129476.0
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11A
Uniprot ID:
P98196
Molecular weight:
129754.6
General function:
Involved in binding
Specific function:
ATP + 1-phosphatidyl-1D-myo-inositol 4,5- bisphosphate = ADP + 1-phosphatidyl-1D-myo-inositol 3,4,5- trisphosphate
Gene Name:
PIK3CD
Uniprot ID:
O00329
Molecular weight:
119478.1
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP10A
Uniprot ID:
O60312
Molecular weight:
167686.6
General function:
Involved in ATP binding
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids in the canicular membrane. May have a role in transport of bile acids into the canaliculus, uptake of bile acids from intestinal contents into intestinal mucosa or both
Gene Name:
ATP8B1
Uniprot ID:
O43520
Molecular weight:
143694.1
General function:
Involved in binding
Specific function:
Phosphorylates PtdIns, PtdIns4P and PtdIns(4,5)P2 with a preference for PtdIns(4,5)P2
Gene Name:
PIK3CB
Uniprot ID:
P42338
Molecular weight:
122761.2
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP9A
Uniprot ID:
O75110
Molecular weight:
118581.5
General function:
Involved in binding
Specific function:
Phosphorylates PtdIns, PtdIns4P and PtdIns(4,5)P2 with a preference for PtdIns(4,5)P2
Gene Name:
PIK3CA
Uniprot ID:
P42336
Molecular weight:
124283.0
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP10D
Uniprot ID:
Q9P241
Molecular weight:
160272.3
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP8A2
Uniprot ID:
Q9NTI2
Molecular weight:
129240.4
General function:
Involved in ATP binding
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids, mainly in secretory vesicles
Gene Name:
ATP8A1
Uniprot ID:
Q9Y2Q0
Molecular weight:
131368.2
General function:
Involved in binding
Specific function:
3-phosphorylates the cellular phosphoinositide PtdIns- 4,5-biphosphate (PtdIns(4,5)P2) to produce PtdIns-3, 4,5- triiphosphate (PtdIns(3,4,5)P3). Links G-protein coupled receptor activation to the secondary messenger PtdIns(3,4,5)P3 production
Gene Name:
PIK3CG
Uniprot ID:
P48736
Molecular weight:
126452.6
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP8B4
Uniprot ID:
Q8TF62
Molecular weight:
135867.0
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11B
Uniprot ID:
Q9Y2G3
Molecular weight:
134188.6
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP8B3
Uniprot ID:
O60423
Molecular weight:
146750.9
General function:
Involved in magnesium ion binding
Specific function:
Tumor suppressor. Acts as a dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins. Also acts as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring from phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-diphosphate, phosphatidylinositol 3-phosphate and inositol 1,3,4,5-tetrakisphosphate with order of substrate preference in vitro PtdIns(3,4,5)P3 > PtdIns(3,4)P2 > PtdIns3P > Ins(1,3,4,5)P4. The lipid phosphatase activity is critical for its tumor suppressor function. Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival. The unphosphorylated form cooperates with AIP1 to suppress AKT1 activation. Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation. Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability.
Gene Name:
PTEN
Uniprot ID:
P60484
Molecular weight:
47165.92
General function:
Involved in transport
Specific function:
Catalyzes the transfer of PtdIns and phosphatidylcholine between membranes
Gene Name:
PITPNB
Uniprot ID:
P48739
Molecular weight:
31539.9
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity).
Gene Name:
PLCH2
Uniprot ID:
O75038
Molecular weight:
154666.975
General function:
Involved in calcium ion binding
Specific function:
May play a role in the antiviral response of interferon (IFN) by amplifying and enhancing the IFN response through increased expression of select subset of potent antiviral genes. May contribute to cytokine-regulated cell proliferation and differentiation
Gene Name:
PLSCR1
Uniprot ID:
O15162
Molecular weight:
35048.8
General function:
Involved in phosphatidylserine biosynthetic process
Specific function:
Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine.
Gene Name:
PTDSS1
Uniprot ID:
P48651
Molecular weight:
55527.18
General function:
Involved in phosphatidylserine decarboxylase activity
Specific function:
Not Available
Gene Name:
PISD
Uniprot ID:
Q9UG56
Molecular weight:
43046.33
General function:
Involved in phosphatidylcholine transmembrane transport
Specific function:
Catalyzes the transfer of PtdIns and phosphatidylcholine between membranes
Gene Name:
PITPNA
Uniprot ID:
Q00169
Molecular weight:
31806.2
General function:
Involved in lipid binding
Specific function:
Converts HDL into larger and smaller particles. May play a key role in extracellular phospholipid transport and modulation of hdl particles
Gene Name:
PLTP
Uniprot ID:
P55058
Molecular weight:
54738.8
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the first alpha-1,4-mannose to GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGM
Uniprot ID:
Q9H3S5
Molecular weight:
49459.2
General function:
Involved in phosphatidylserine biosynthetic process
Specific function:
Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. PTDSS2 is specific for phosphatatidylethanolamine and does not act on phosphatidylcholine.
Gene Name:
PTDSS2
Uniprot ID:
Q9BVG9
Molecular weight:
56252.55
General function:
Involved in transferase activity, transferring acyl groups
Specific function:
Probable acetyltransferase, which acetylates the inositol ring of phosphatidylinositol during biosynthesis of GPI-anchor. Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity).
Gene Name:
PIGW
Uniprot ID:
Q7Z7B1
Molecular weight:
Not Available
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Essential component of glycosylphosphatidylinositol- mannosyltransferase 1 which transfers the first of the 4 mannoses in the GPI-anchor precursors during GPI-anchor biosynthesis. Probably acts by stabilizing the mannosyltransferase PIGM
Gene Name:
PIGX
Uniprot ID:
Q8TBF5
Molecular weight:
28788.1
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers a fourth mannose to some trimannosyl-GPIs during GPI precursor assembly. The presence of a fourth mannose in GPI is facultative and only scarcely detected, suggesting that it only exists in some tissues
Gene Name:
PIGZ
Uniprot ID:
Q86VD9
Molecular weight:
63472.6
General function:
Involved in inositol or phosphatidylinositol phosphatase activity
Specific function:
Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways. Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear. While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking. Confers resistance to dietary obesity. May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane. Part of a signaling pathway that regulates actin cytoskeleton remodeling. Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling. Regulates cell adhesion and cell spreading. Required for HGF-mediated lamellipodium formation, cell scattering and spreading. Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation. Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth. Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Involved in EGF signaling pathway. Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3. Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity. Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1. In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling. May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6.
Gene Name:
INPPL1
Uniprot ID:
O15357
Molecular weight:
138597.495
General function:
Involved in inositol or phosphatidylinositol phosphatase activity
Specific function:
Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways. Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity. Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6.
Gene Name:
INPP5D
Uniprot ID:
Q92835
Molecular weight:
133291.4
General function:
Involved in binding
Specific function:
Catalytic subunit of the PI3K complex. Involved in the transport of lysosomal enzyme precursors to lysosomes
Gene Name:
PIK3C3
Uniprot ID:
Q8NEB9
Molecular weight:
101548.6
General function:
Involved in phosphoric diester hydrolase activity
Specific function:
Not Available
Gene Name:
PLCXD2
Uniprot ID:
Q0VAA5
Molecular weight:
34776.9
General function:
Involved in calcium ion binding
Specific function:
Hydrolyzes the phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 2 second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG mediates the activation of protein kinase C (PKC), while IP3 releases Ca(2+) from intracellular stores. Required for acrosome reaction in sperm during fertilization, probably by acting as an important enzyme for intracellular Ca(2+) mobilization in the zona pellucida-induced acrosome reaction. May play a role in cell growth. Modulates the liver regeneration in cooperation with nuclear PKC. Overexpression up-regulates the Erk signaling pathway and proliferation.
Gene Name:
PLCD4
Uniprot ID:
Q9BRC7
Molecular weight:
87584.515
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCH1
Uniprot ID:
Q4KWH8
Molecular weight:
189221.52
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation.
Gene Name:
PLCE1
Uniprot ID:
Q9P212
Molecular weight:
223869.895
General function:
Involved in calcium ion binding
Specific function:
Hydrolyzes the phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 2 second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG mediates the activation of protein kinase C (PKC), while IP3 releases Ca(2+) from intracellular stores. Essential for trophoblast and placental development. May participate in cytokinesis by hydrolyzing PIP2 at the cleavage furrow.
Gene Name:
PLCD3
Uniprot ID:
Q8N3E9
Molecular weight:
89257.54
General function:
Involved in calcium ion binding
Specific function:
May mediate accelerated ATP-independent bidirectional transbilayer migration of phospholipids upon binding calcium ions that results in a loss of phospholipid asymmetry in the plasma membrane. May play a central role in the initiation of fibrin clot formation, in the activation of mast cells and in the recognition of apoptotic and injured cells by the reticuloendothelial system
Gene Name:
PLSCR2
Uniprot ID:
Q9NRY7
Molecular weight:
25522.5
General function:
Involved in calcium ion binding
Specific function:
May mediate accelerated ATP-independent bidirectional transbilayer migration of phospholipids upon binding calcium ions that results in a loss of phospholipid asymmetry in the plasma membrane. May play a central role in the initiation of fibrin clot formation, in the activation of mast cells and in the recognition of apoptotic and injured cells by the reticuloendothelial system
Gene Name:
PLSCR3
Uniprot ID:
Q9NRY6
Molecular weight:
31648.1

Only showing the first 50 proteins. There are 80 proteins in total.