You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2008-10-29 12:42:11 UTC
Update Date2016-02-11 01:20:14 UTC
HMDB IDHMDB11136
Secondary Accession NumbersNone
Metabolite Identification
Common Name19(S)-HETE
Description19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific. Monooxygenase. (EC:1.14.14.1).
Structure
Thumb
Synonyms
ValueSource
(19S)-Hydroxy arachidonic acidChEBI
(19S)-Hydroxyeicosatetraenoic acidChEBI
(19S)-Hydroxyicosatetraenoic acidChEBI
(19S,5Z,8Z,11Z,14Z)-19-Hydroxy-5,8,11,14-eicosatetraenoic acidChEBI
(5Z,8Z,11Z,14Z)-(19S)-19-Hydroxyeicosa-5,8,11,14-tetraenoic acidChEBI
(5Z,8Z,11Z,14Z,19S)-19-Hydroxyeicosa-5,8,11,14-tetraenoic acidChEBI
(5Z,8Z,11Z,14Z,19S)-19-Hydroxyicosa-5,8,11,14-tetraenoic acidChEBI
19(S)-Hydroxy-all-cis-5,8,11,14-eicosatetraenoic acidChEBI
19(S)-Hydroxyeicosa-5(Z),8(Z),11(Z),14(Z)-tetraenoic acidChEBI
(19S)-Hydroxy arachidonateGenerator
(19S)-HydroxyeicosatetraenoateGenerator
(19S)-HydroxyicosatetraenoateGenerator
(19S,5Z,8Z,11Z,14Z)-19-Hydroxy-5,8,11,14-eicosatetraenoateGenerator
(5Z,8Z,11Z,14Z)-(19S)-19-Hydroxyeicosa-5,8,11,14-tetraenoateGenerator
(5Z,8Z,11Z,14Z,19S)-19-Hydroxyeicosa-5,8,11,14-tetraenoateGenerator
(5Z,8Z,11Z,14Z,19S)-19-Hydroxyicosa-5,8,11,14-tetraenoateGenerator
19(S)-Hydroxy-all-cis-5,8,11,14-eicosatetraenoateGenerator
19(S)-Hydroxyeicosa-5(Z),8(Z),11(Z),14(Z)-tetraenoateGenerator
Chemical FormulaC20H32O3
Average Molecular Weight320.4663
Monoisotopic Molecular Weight320.23514489
IUPAC Name(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoic acid
Traditional Name19S-hete
CAS Registry Number79551-85-2
SMILES
C[C@H](O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O
InChI Identifier
InChI=1S/C20H32O3/c1-19(21)17-15-13-11-9-7-5-3-2-4-6-8-10-12-14-16-18-20(22)23/h3-6,9-12,19,21H,2,7-8,13-18H2,1H3,(H,22,23)/b5-3-,6-4-,11-9-,12-10-/t19-/m0/s1
InChI KeyInChIKey=XFUXZHQUWPFWPR-DZBJBCEBSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as hydroxyeicosatetraenoic acids. These are eicosanoic acids with an attached hydroxyl group and four CC double bonds.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentHydroxyeicosatetraenoic acids
Alternative Parents
Substituents
  • Hydroxyeicosatetraenoic acid
  • Long-chain fatty acid
  • Hydroxy fatty acid
  • Fatty acid
  • Unsaturated fatty acid
  • Secondary alcohol
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0018 mg/mLALOGPS
logP5.8ALOGPS
logP5.12ChemAxon
logS-5.2ALOGPS
pKa (Strongest Acidic)4.82ChemAxon
pKa (Strongest Basic)-1.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 Å2ChemAxon
Rotatable Bond Count14ChemAxon
Refractivity101.7 m3·mol-1ChemAxon
Polarizability37.93 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Acetaminophen Action PathwaySMP00710Not Available
Acetylsalicylic Acid PathwaySMP00083Not Available
Antipyrine Action PathwaySMP00692Not Available
Antrafenine Action PathwaySMP00693Not Available
Arachidonic Acid MetabolismSMP00075map00590
Bromfenac PathwaySMP00102Not Available
Carprofen Action PathwaySMP00694Not Available
Celecoxib PathwaySMP00096Not Available
Diclofenac PathwaySMP00093Not Available
Diflunisal PathwaySMP00289Not Available
Etodolac PathwaySMP00084Not Available
Etoricoxib Action PathwaySMP00695Not Available
Fenoprofen Action PathwaySMP00696Not Available
Flurbiprofen Action PathwaySMP00697Not Available
Ibuprofen PathwaySMP00086Not Available
Indomethacin PathwaySMP00104Not Available
Ketoprofen PathwaySMP00085Not Available
Ketorolac PathwaySMP00098Not Available
Leukotriene C4 Synthesis DeficiencySMP00353Not Available
Lornoxicam Action PathwaySMP00700Not Available
Lumiracoxib Action PathwaySMP00699Not Available
Magnesium salicylate Action PathwaySMP00698Not Available
Mefanamic Acid PathwaySMP00109Not Available
Meloxicam PathwaySMP00106Not Available
Nabumetone PathwaySMP00114Not Available
Naproxen PathwaySMP00120Not Available
Nepafenac Action PathwaySMP00702Not Available
Oxaprozin PathwaySMP00113Not Available
Phenylbutazone Action PathwaySMP00701Not Available
Piroxicam PathwaySMP00077Not Available
Rofecoxib PathwaySMP00087Not Available
Salicylate-sodium Action PathwaySMP00708Not Available
Salicylic Acid Action PathwaySMP00709Not Available
Salsalate Action PathwaySMP00707Not Available
Sulindac PathwaySMP00094Not Available
Suprofen PathwaySMP00101Not Available
Tenoxicam Action PathwaySMP00706Not Available
Tiaprofenic Acid Action PathwaySMP00705Not Available
Tolmetin Action PathwaySMP00704Not Available
Trisalicylate-choline Action PathwaySMP00703Not Available
Valdecoxib PathwaySMP00116Not Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB027914
KNApSAcK IDNot Available
Chemspider ID7827806
KEGG Compound IDC14749
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB11136
Metagene LinkHMDB11136
METLIN IDNot Available
PubChem Compound9548883
PDB IDNot Available
ChEBI ID34185
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
General function:
Involved in monooxygenase activity
Specific function:
Exhibits low testosterone 6-beta-hydroxylase activity.
Gene Name:
CYP3A43
Uniprot ID:
Q9HB55
Molecular weight:
57756.285
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Participates in the metabolism of an as-yet-unknown biologically active molecule that is a participant in eye development.
Gene Name:
CYP1B1
Uniprot ID:
Q16678
Molecular weight:
60845.33
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP2C18
Uniprot ID:
P33260
Molecular weight:
55710.075
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
May be involved in the metabolism of various pneumotoxicants including naphthalene. Is able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possesses no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. Bioactivates 3-methylindole (3MI) by dehydrogenation to the putative electrophile 3-methylene-indolenine.
Gene Name:
CYP2F1
Uniprot ID:
P24903
Molecular weight:
55500.64
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP4X1
Uniprot ID:
Q8N118
Molecular weight:
58874.62
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a coumarin 7-hydroxylase activity. Active in the metabolic activation of hexamethylphosphoramide, N,N-dimethylaniline, 2'-methoxyacetophenone, N-nitrosomethylphenylamine, and the tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Possesses phenacetin O-deethylation activity.
Gene Name:
CYP2A13
Uniprot ID:
Q16696
Molecular weight:
56687.095
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP4B1
Uniprot ID:
P13584
Molecular weight:
58990.64
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Not Available
Gene Name:
CYP4Z1
Uniprot ID:
Q86W10
Molecular weight:
59085.45
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the formation of aromatic C18 estrogens from C19 androgens.
Gene Name:
CYP19A1
Uniprot ID:
P11511
Molecular weight:
57882.48
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
General function:
Involved in monooxygenase activity
Specific function:
Has a potential importance for extrahepatic xenobiotic metabolism.
Gene Name:
CYP2S1
Uniprot ID:
Q96SQ9
Molecular weight:
55816.205
General function:
Involved in monooxygenase activity
Specific function:
This enzyme metabolizes arachidonic acid predominantly via a NADPH-dependent olefin epoxidation to all four regioisomeric cis-epoxyeicosatrienoic acids. One of the predominant enzymes responsible for the epoxidation of endogenous cardiac arachidonic acid pools.
Gene Name:
CYP2J2
Uniprot ID:
P51589
Molecular weight:
57610.165
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP2A7
Uniprot ID:
P20853
Molecular weight:
56424.735
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP1A1
Uniprot ID:
A0N0X8
Molecular weight:
58164.8
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
CYP2D6
Uniprot ID:
Q6NWU0
Molecular weight:
55729.9