You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2008-10-29 14:21:14 UTC
Update Date2017-12-07 02:29:19 UTC
HMDB IDHMDB0011146
Secondary Accession Numbers
  • HMDB0011184
  • HMDB11146
  • HMDB11184
Metabolite Identification
Common NameDG(16:0e/18:0/0:0)
Description2-Octadecanoyl-1-hexadecyl-sn-glycerol is an intermediate in ether lipid metabolism. 2-Octadecanoyl-1-hexadecyl-sn-glycerol is converted from 2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate via phosphatidate phosphatase (EC: 3.1.3.4). Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. Ether lipids are called plasmalogens (1-O-1'-alkenyl-2-acylglycerophospholipids) if these are glycerol-containing phospholipids with an unsaturated O-(1-alkenyl) (vinyl ether) group at the first position on the glycerol chain. Plasmalogens as well as some 1-O-alkyl lipids are ubiquitous and sometimes major parts of the cell membranes in mammals and anaerobic bacteria. In archaea, ether lipids are the major polar lipids in the cell envelope and their abundance is one of the major characteristics that separate this group of prokaryotes from the bacteria. In these cells, diphytanylglycerolipids or bipolar macrocyclic tetraethers can form covalently linked 'bilayers'.
Structure
Thumb
Synonyms
ValueSource
2-Octadecanoyl-1-hexadecyl-sn-glycerolHMDB
DG(O-16:0/18:0/0:0)HMDB
Chemical FormulaC37H74O4
Average Molecular Weight582.9811
Monoisotopic Molecular Weight582.558710856
IUPAC Name(2S)-1-(hexadecyloxy)-3-hydroxypropan-2-yl octadecanoate
Traditional Name(2S)-1-(hexadecyloxy)-3-hydroxypropan-2-yl octadecanoate
CAS Registry NumberNot Available
SMILES
[H][C@](CO)(COCCCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCCCC
InChI Identifier
InChI=1S/C37H74O4/c1-3-5-7-9-11-13-15-17-19-20-22-24-26-28-30-32-37(39)41-36(34-38)35-40-33-31-29-27-25-23-21-18-16-14-12-10-8-6-4-2/h36,38H,3-35H2,1-2H3/t36-/m0/s1
InChI KeyALBMTLREXAADKV-BHVANESWSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as 1-alkyl,2-acylglycerols. These are glycerides consisting of two fatty acyl chains covalently bonded to a glycerol molecule at the 1- and 2-positions through an ether and an ester linkage, respectively.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerolipids
Sub ClassDiradylglycerols
Direct Parent1-alkyl,2-acylglycerols
Alternative Parents
Substituents
  • 1-alkyl,2-acylglycerol
  • Fatty acid ester
  • Glycerol ether
  • Fatty acyl
  • Carboxylic acid ester
  • Monocarboxylic acid or derivatives
  • Ether
  • Dialkyl ether
  • Carboxylic acid derivative
  • Organic oxide
  • Primary alcohol
  • Organooxygen compound
  • Organic oxygen compound
  • Alcohol
  • Carbonyl group
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility1.6e-05 g/LALOGPS
logP10.43ALOGPS
logP13.27ChemAxon
logS-7.6ALOGPS
pKa (Strongest Acidic)14.58ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area55.76 ŲChemAxon
Rotatable Bond Count36ChemAxon
Refractivity177.15 m³·mol⁻¹ChemAxon
Polarizability79.55 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0079-6395775000-a89e095caeda8660b4d7View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationNot Available
PathwaysNot Available
NameSMPDB/PathwhizKEGG
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB027921
KNApSAcK IDNot Available
Chemspider ID18558308
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound18603089
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Ghosh S, Strum JC, Bell RM: Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 1997 Jan;11(1):45-50. [PubMed:9034165 ]
  6. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 130 proteins in total.

Enzymes

General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Catalyzes the biosynthesis of phosphatidylinositol (PtdIns) as well as PtdIns:inositol exchange reaction. May thus act to reduce an excessive cellular PtdIns content. The exchange activity is due to the reverse reaction of PtdIns synthase and is dependent on CMP, which is tightly bound to the enzyme.
Gene Name:
CDIPT
Uniprot ID:
O14735
Molecular weight:
23538.47
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity).
Gene Name:
PLCH2
Uniprot ID:
O75038
Molecular weight:
154666.975
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in diacylglycerol kinase activity
Specific function:
ATP + 1,2-diacylglycerol = ADP + 1,2-diacyl- sn-glycerol 3-phosphate
Gene Name:
DGKI
Uniprot ID:
O75912
Molecular weight:
116996.2
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Provides CDP-diacylglycerol an important precursor for the synthesis of phosphatidylinositol, phosphatidylglycerol, and cardiolipin.
Gene Name:
CDS2
Uniprot ID:
O95674
Molecular weight:
51417.5
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in phosphoinositide phospholipase C activity
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling.
Gene Name:
PLCG2
Uniprot ID:
P16885
Molecular weight:
147868.67
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in calcium ion binding
Specific function:
Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, FGFR1, FGFR2, FGFR3 and FGFR4. Plays a role in actin reorganization and cell migration.
Gene Name:
PLCG1
Uniprot ID:
P19174
Molecular weight:
148658.92
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in diacylglycerol kinase activity
Specific function:
Upon cell stimulation converts the second messenger diacylglycerol into phosphatidate, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity
Gene Name:
DGKA
Uniprot ID:
P23743
Molecular weight:
82629.5
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in diacylglycerol kinase activity
Specific function:
Reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid
Gene Name:
DGKG
Uniprot ID:
P49619
Molecular weight:
89095.3
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. Essential for trophoblast and placental development.
Gene Name:
PLCD1
Uniprot ID:
P51178
Molecular weight:
88134.23
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]
General function:
Involved in diacylglycerol kinase activity
Specific function:
Highly selective for arachidonate-containing species of diacylglycerol (DAG). May terminate signals transmitted through arachidonoyl-DAG or may contribute to the synthesis of phospholipids with defined fatty acid composition
Gene Name:
DGKE
Uniprot ID:
P52429
Molecular weight:
63926.6
References
  1. Kurz M, Brachvogel V, Matter H, Stengelin S, Thuring H, Kramer W: Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins. 2003 Feb 1;50(2):312-28. [PubMed:12486725 ]

Only showing the first 10 proteins. There are 130 proteins in total.