You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusDetected and Quantified
Creation Date2009-03-24 16:16:29 UTC
Update Date2018-03-28 17:06:04 UTC
HMDB IDHMDB0011761
Secondary Accession Numbers
  • HMDB11761
Metabolite Identification
Common NameCer(d18:0/18:0)
DescriptionCeramides (N-acylsphingosine) are one of the hydrolysis byproducts of sphingomyelin by the enzyme sphingomyelinase (sphingomyelin phosphorylcholine phosphohydrolase E.C.3.1.4.12) which has been identified in the subcellular fractions of human epidermis (PMID 25935 ) and many other tissues. They can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID 14998372 ). Is key in the biosynthesis of glycosphingolipids and gangliosides.
Structure
Thumb
Synonyms
ValueSource
C18DH CerChEBI
DHC-a 18:0/18:0ChEBI
N-(Octadecanoyl)-dihydroceramideChEBI
N-(Octadecanoyl)-sphinganineChEBI
N-(Octodecanoyl)-sphinganineChEBI
N-(Stearoyl)-dihydroceramideChEBI
N-OctodecanoyldihydroceramideChEBI
N-OctodecanoyldihydrosphingosineChEBI
N-StearoyldihydroceramideChEBI
N-StearoyldihydrosphingosineChEBI
N-StearoylsphinganineChEBI
C18-(dihydro)CeramideMeSH
N-Stearoyl-sphinganineMeSH
Chemical FormulaC36H73NO3
Average Molecular Weight567.9697
Monoisotopic Molecular Weight567.559045207
IUPAC NameN-[(2S,3R)-1,3-dihydroxyoctadecan-2-yl]octadecanamide
Traditional NameC18DH cer
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)CCCCCCCCCCCCCCC
InChI Identifier
InChI=1S/C36H73NO3/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-36(40)37-34(33-38)35(39)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h34-35,38-39H,3-33H2,1-2H3,(H,37,40)/t34-,35+/m0/s1
InChI KeyKZTJQXAANJHSCE-OIDHKYIRSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as long-chain ceramides. These are ceramides bearing a long chain fatty acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassCeramides
Direct ParentLong-chain ceramides
Alternative Parents
Substituents
  • Long-chain ceramide
  • Fatty amide
  • N-acyl-amine
  • Fatty acyl
  • Carboxamide group
  • Secondary alcohol
  • Secondary carboxylic acid amide
  • Carboxylic acid derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Alcohol
  • Organic nitrogen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect

Health effect:

Organoleptic effect:

Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.7e-05 g/LALOGPS
logP9.71ALOGPS
logP11.96ChemAxon
logS-7.2ALOGPS
pKa (Strongest Acidic)13.83ChemAxon
pKa (Strongest Basic)0.034ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area69.56 ŲChemAxon
Rotatable Bond Count33ChemAxon
Refractivity174.02 m³·mol⁻¹ChemAxon
Polarizability77.97 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-00ds-4093755000-9f40edf61ebb96bfdf24View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0000090000-51e79a766f5156fc9e6fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-0050090000-3ce18416493c8266862cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0gc0-0090050000-aba86cc27fe067d27de4View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
Tissue LocationNot Available
PathwaysNot Available
NameSMPDB/PathwhizKEGG
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.146 +/- 0.002 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not Quantified Newborn (0-30 days old)Not Specified
Premature neonates
details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB028431
KNApSAcK IDNot Available
Chemspider ID4446686
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5283573
PDB IDNot Available
ChEBI ID67033
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bowser PA, Gray GM: Sphingomyelinase in pig and human epidermis. J Invest Dermatol. 1978 Jun;70(6):331-5. [PubMed:25935 ]
  2. Tserng KY, Griffin RL: Ceramide metabolite, not intact ceramide molecule, may be responsible for cellular toxicity. Biochem J. 2004 Jun 15;380(Pt 3):715-22. [PubMed:14998372 ]
  3. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  4. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  5. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  6. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  7. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  8. Ghosh S, Strum JC, Bell RM: Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 1997 Jan;11(1):45-50. [PubMed:9034165 ]
  9. Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH Jr: Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols. J Lipid Res. 2008 Aug;49(8):1621-39. doi: 10.1194/jlr.R800012-JLR200. Epub 2008 May 21. [PubMed:18499644 ]
  10. Hannun YA, Obeid LM: Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73-7. [PubMed:7701566 ]
  11. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  12. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 66 proteins in total.

Enzymes

General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Required for cell growth
Gene Name:
SGMS2
Uniprot ID:
Q8NHU3
Molecular weight:
42279.8
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Suppresses BAX-mediated apoptosis and also prevents cell death in response to stimuli such as hydrogen peroxide, osmotic stress, elevated temperature and exogenously supplied sphingolipids. May protect against cell death by reversing the stress-inducible increase in levels of proapoptotic ceramide. Required for cell growth
Gene Name:
SGMS1
Uniprot ID:
Q86VZ5
Molecular weight:
49207.3
General function:
Involved in hydrolase activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic activity.
Gene Name:
SMPD1
Uniprot ID:
P17405
Molecular weight:
69935.53
General function:
Cell wall/membrane/envelope biogenesis
Specific function:
Catalyzes the first glycosylation step in glycosphingolipid biosynthesis, the transfer of glucose to ceramide. May also serve as a "flippase".
Gene Name:
UGCG
Uniprot ID:
Q16739
Molecular weight:
44853.255
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415

Only showing the first 10 proteins. There are 66 proteins in total.