You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2009-03-24 16:16:41 UTC
Update Date2016-02-11 01:22:16 UTC
HMDB IDHMDB11773
Secondary Accession NumbersNone
Metabolite Identification
Common NameCer(d18:1/14:0)
DescriptionCeramides (N-acylsphingosine) are one of the hydrolysis byproducts of sphingomyelin by the enzyme sphingomyelinase (sphingomyelin phosphorylcholine phosphohydrolase E.C.3.1.4.12) which has been identified in the subcellular fractions of human epidermis (PMID 25935 ) and many other tissues. They can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID 14998372 ). Is key in the biosynthesis of glycosphingolipids and gangliosides.
Structure
Thumb
Synonyms
ValueSource
C14 CerChEBI
N-(Myristoyl)ceramideChEBI
N-(Tetradecanoyl)ceramideChEBI
N-(Tetradecanoyl)sphing-4-enineChEBI
N-Myristoylsphing-4-enineChEBI
N-MyristoylsphingosineChEBI
N-Tetradecanoylsphing-4-enineChEBI
Chemical FormulaC32H63NO3
Average Molecular Weight509.8475
Monoisotopic Molecular Weight509.480794887
IUPAC NameN-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]tetradecanamide
Traditional NameC14 cer
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO)NC(=O)CCCCCCCCCCCCC
InChI Identifier
InChI=1S/C32H63NO3/c1-3-5-7-9-11-13-15-16-18-19-21-23-25-27-31(35)30(29-34)33-32(36)28-26-24-22-20-17-14-12-10-8-6-4-2/h25,27,30-31,34-35H,3-24,26,28-29H2,1-2H3,(H,33,36)/b27-25+/t30-,31+/m0/s1
InChI KeyInChIKey=ZKRPGPZHULJLKJ-JHRQRACZSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as long-chain ceramides. These are ceramides bearing a long chain fatty acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassCeramides
Direct ParentLong-chain ceramides
Alternative Parents
Substituents
  • Long-chain ceramide
  • N-acylsphingosine_base
  • Fatty acyl
  • N-acyl-amine
  • Fatty amide
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility5.83e-05 mg/mLALOGPS
logP9.1ALOGPS
logP9.98ChemAxon
logS-6.9ALOGPS
pKa (Strongest Acidic)13.62ChemAxon
pKa (Strongest Basic)0.02ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area69.56 Å2ChemAxon
Rotatable Bond Count28ChemAxon
Refractivity156.57 m3·mol-1ChemAxon
Polarizability68.55 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.012 +/- 0.001 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB028443
KNApSAcK IDNot Available
Chemspider ID4445481
KEGG Compound IDC13916
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB11773
Metagene LinkHMDB11773
METLIN IDNot Available
PubChem Compound5282310
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bowser PA, Gray GM: Sphingomyelinase in pig and human epidermis. J Invest Dermatol. 1978 Jun;70(6):331-5. [25935 ]
  2. Tserng KY, Griffin RL: Ceramide metabolite, not intact ceramide molecule, may be responsible for cellular toxicity. Biochem J. 2004 Jun 15;380(Pt 3):715-22. [14998372 ]

Only showing the first 50 proteins. There are 66 proteins in total.

Enzymes

General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Required for cell growth
Gene Name:
SGMS2
Uniprot ID:
Q8NHU3
Molecular weight:
42279.8
General function:
Involved in catalytic activity
Specific function:
Bidirectional lipid cholinephosphotransferase capable of converting phosphatidylcholine (PC) and ceramide to sphingomyelin (SM) and diacylglycerol (DAG) and vice versa. Direction is dependent on the relative concentrations of DAG and ceramide as phosphocholine acceptors. Directly and specifically recognizes the choline head group on the substrate. Also requires two fatty chains on the choline-P donor molecule in order to be recognized efficiently as a substrate. Does not function strictly as a SM synthase. Suppresses BAX-mediated apoptosis and also prevents cell death in response to stimuli such as hydrogen peroxide, osmotic stress, elevated temperature and exogenously supplied sphingolipids. May protect against cell death by reversing the stress-inducible increase in levels of proapoptotic ceramide. Required for cell growth
Gene Name:
SGMS1
Uniprot ID:
Q86VZ5
Molecular weight:
49207.3
General function:
Involved in hydrolase activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic activity.
Gene Name:
SMPD1
Uniprot ID:
P17405
Molecular weight:
69935.53
General function:
Cell wall/membrane/envelope biogenesis
Specific function:
Catalyzes the first glycosylation step in glycosphingolipid biosynthesis, the transfer of glucose to ceramide. May also serve as a "flippase".
Gene Name:
UGCG
Uniprot ID:
Q16739
Molecular weight:
44853.255
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGQ
Uniprot ID:
Q9BRB3
Molecular weight:
65343.25
General function:
Involved in biosynthetic process
Specific function:
Necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis.
Gene Name:
PIGA
Uniprot ID:
P37287
Molecular weight:
54126.065
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGH
Uniprot ID:
Q14442
Molecular weight:
21080.415
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltr
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGP
Uniprot ID:
P57054
Molecular weight:
18089.055
General function:
Involved in phosphatidylinositol N-acetylglucosaminyltransferase activity
Specific function:
Part of the complex catalyzing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol, the first step of GPI biosynthesis.
Gene Name:
PIGC
Uniprot ID:
Q92535
Molecular weight:
33582.18
General function:
Involved in carboxy-lyase activity
Specific function:
Cleaves phosphorylated sphingoid bases (PSBs), such as sphingosine-1-phosphate, into fatty aldehydes and phosphoethanolamine. Elevates stress-induced ceramide production and apoptosis.
Gene Name:
SGPL1
Uniprot ID:
O95470
Molecular weight:
63523.265
General function:
Involved in diacylglycerol kinase activity
Specific function:
Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-sphingosine and to a lesser extent sphinganine, but not other lipids, such as D,L-threo-dihydrosphingosine, N,N-dimethylsphingosine, diacylglycerol, ceramide, or phosphatidylinositol.
Gene Name:
SPHK1
Uniprot ID:
Q9NYA1
Molecular weight:
42517.245
General function:
Involved in lipid metabolic process
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid.
Gene Name:
ASAH1
Uniprot ID:
Q13510
Molecular weight:
44045.27
General function:
Involved in catalytic activity
Specific function:
Converts sphingomyelin to ceramide. Also has phospholipase C activity toward palmitoyl lyso-phosphocholine. Does not appear to have nucleotide pyrophosphatase activity.
Gene Name:
ENPP7
Uniprot ID:
Q6UWV6
Molecular weight:
51493.415
General function:
Involved in metal ion binding
Specific function:
Converts sphingomyelin to ceramide. Hydrolyze 1-acyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-platelet-activating factor). The physiological substrate seems to be Lyso-PAF.
Gene Name:
SMPD2
Uniprot ID:
O60906
Molecular weight:
47645.29
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the transfer of galactose to ceramide, a key enzymatic step in the biosynthesis of galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the central nervous system and peripheral nervous system.
Gene Name:
UGT8
Uniprot ID:
Q16880
Molecular weight:
61455.31
General function:
Involved in protein binding
Specific function:
May mediate the intracellular trafficking of ceramide in a non-vesicular manner
Gene Name:
COL4A3BP
Uniprot ID:
Q9Y5P4
Molecular weight:
70834.4
General function:
Involved in diacylglycerol kinase activity
Specific function:
Catalyzes specifically the phosphorylation of ceramide to form ceramide 1-phosphate. Acts efficiently on natural and analog ceramides (C6, C8, C16 ceramides, and C8-dihydroceramide), to a lesser extent on C2-ceramide and C6-dihydroceramide, but not on other lipids, such as various sphingosines. Binds phosphoinositides
Gene Name:
CERK
Uniprot ID:
Q8TCT0
Molecular weight:
59977.0
General function:
Involved in sphingolipid activator protein activity
Specific function:
Binds gangliosides and stimulates ganglioside GM2 degradation. It stimulates only the breakdown of ganglioside GM2 and glycolipid GA2 by beta-hexosaminidase A. It extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-D-galactosamine and conversion to GM3
Gene Name:
GM2A
Uniprot ID:
P17900
Molecular weight:
20838.1
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
GBA
Uniprot ID:
P04062
Molecular weight:
59715.745
General function:
Involved in immune response
Specific function:
T-cell surface glycoprotein CD1e, soluble is required for the presentation of glycolipid antigens on the cell surface. The membrane-associated form is not active
Gene Name:
CD1E
Uniprot ID:
P15812
Molecular weight:
43626.1
General function:
Involved in cholesterol binding
Specific function:
May be involved in the regulation of the lipid composition of sperm membranes during the maturation in the epididymis
Gene Name:
NPC2
Uniprot ID:
P61916
Molecular weight:
16570.1
General function:
Involved in sphingosine N-acyltransferase activity
Specific function:
May be either a bona fide (dihydro)ceramide synthase or a modulator of its activity. When overexpressed in cells is involved in the production of sphingolipids containing mainly one fatty acid donor (N-linked stearoyl- (C18) ceramide) in a fumonisin B1-independent manner (By similarity).
Gene Name:
CERS1
Uniprot ID:
P27544
Molecular weight:
Not Available
General function:
Involved in immune response
Specific function:
Antigen-presenting protein that binds self and non-self glycolipids and presents them to T-cell receptors on natural killer T-cells
Gene Name:
CD1D
Uniprot ID:
P15813
Molecular weight:
37717.0
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the first alpha-1,4-mannose to GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGM
Uniprot ID:
Q9H3S5
Molecular weight:
49459.2
General function:
Involved in transferase activity, transferring acyl groups
Specific function:
Probable acetyltransferase, which acetylates the inositol ring of phosphatidylinositol during biosynthesis of GPI-anchor. Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity).
Gene Name:
PIGW
Uniprot ID:
Q7Z7B1
Molecular weight:
Not Available
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Essential component of glycosylphosphatidylinositol- mannosyltransferase 1 which transfers the first of the 4 mannoses in the GPI-anchor precursors during GPI-anchor biosynthesis. Probably acts by stabilizing the mannosyltransferase PIGM
Gene Name:
PIGX
Uniprot ID:
Q8TBF5
Molecular weight:
28788.1
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers a fourth mannose to some trimannosyl-GPIs during GPI precursor assembly. The presence of a fourth mannose in GPI is facultative and only scarcely detected, suggesting that it only exists in some tissues
Gene Name:
PIGZ
Uniprot ID:
Q86VD9
Molecular weight:
63472.6
General function:
Involved in galactosyltransferase activity
Specific function:
Beta-1,3-N-acetylglucosaminyltransferase that plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids, notably by participating in biosynthesis of HNK-1 and Lewis X carbohydrate structures. Has strong activity toward lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. Probably plays a central role in regulating neolacto-series glycolipid synthesis during embryonic development.
Gene Name:
B3GNT5
Uniprot ID:
Q9BYG0
Molecular weight:
44052.295
General function:
Involved in metal ion binding
Specific function:
Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization.
Gene Name:
SMPD3
Uniprot ID:
Q9NY59
Molecular weight:
71080.1
General function:
Involved in galactosyltransferase activity
Specific function:
Catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Can use glycolipid LC3Cer as an efficient acceptor
Gene Name:
B3GALT5
Uniprot ID:
Q9Y2C3
Molecular weight:
36188.9
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the third alpha-1,2-mannose to Man2-GlcN-acyl-PI during GPI precursor assembly
Gene Name:
PIGB
Uniprot ID:
Q92521
Molecular weight:
65055.9
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Involved in GPI-anchor biosynthesis through the transfer of ethanolamine phosphate to the third mannose of GPI
Gene Name:
PIGF
Uniprot ID:
Q07326
Molecular weight:
24889.3
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI second mannose
Gene Name:
PIGG
Uniprot ID:
Q5H8A4
Molecular weight:
108171.7
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor
Gene Name:
PIGN
Uniprot ID:
O95427
Molecular weight:
105809.2
General function:
Involved in catalytic activity
Specific function:
Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI third mannose which links the GPI-anchor to the C-terminus of the proteins by an amide bond
Gene Name:
PIGO
Uniprot ID:
Q8TEQ8
Molecular weight:
118697.6
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGS
Uniprot ID:
Q96S52
Molecular weight:
61655.5
General function:
Involved in protein binding
Specific function:
Component of the GPI transamidase complex. Essential for transfer of GPI to proteins, particularly for formation of carbonyl intermediates
Gene Name:
PIGT
Uniprot ID:
Q969N2
Molecular weight:
65699.0
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI transamidase complex. May be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI
Gene Name:
PIGU
Uniprot ID:
Q9H490
Molecular weight:
50051.2
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Alpha-1,6-mannosyltransferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers the second mannose to the glycosylphosphatidylinositol during GPI precursor assembly
Gene Name:
PIGV
Uniprot ID:
Q9NUD9
Molecular weight:
55712.1
General function:
Involved in GPI anchor biosynthetic process
Specific function:
Component of the GPI-GlcNAc transferase (GPI-GnT) complex in the endoplasmic reticulum, a complex that catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI- anchors for cell surface proteins. May act by regulating the catalytic subunit PIGA
Gene Name:
PIGY
Uniprot ID:
Q3MUY2
Molecular weight:
8057.5
General function:
Involved in glycolipid transporter activity
Specific function:
Involved in TGN-to-plasma membrane transport and in the formation of post-Golgi constitutive carriers. May play a role in ensuring the coordination of the budding and the fission reactions
Gene Name:
PLEKHA8
Uniprot ID:
Q96JA3
Molecular weight:
58306.0
General function:
Involved in metal ion binding
Specific function:
Catalyzes the hydrolysis of membrane sphingomyelin to form phosphorylcholine and ceramide.
Gene Name:
SMPD4
Uniprot ID:
Q9NXE4
Molecular weight:
86192.575
General function:
Involved in ceramidase activity
Specific function:
May hydrolyze the sphingolipid ceramide into sphingosine and free fatty acid (By similarity).
Gene Name:
ASAH2C
Uniprot ID:
P0C7U2
Molecular weight:
Not Available
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid. Unsaturated long-chain ceramides are the best substrates, saturated long-chain ceramides and unsaturated very long-chain ceramides are good substrates, whereas saturated very long-chain ceramides and short-chain ceramides were poor substrates. The substrate preference is D-erythro-C(18:1)-, C(20:1)-, C(20:4)-ceramide > D-erythro-C(16:0)-, C(18:0), C(20:0)-ceramide > D-erythro-C(24:1)-ceramide > D-erythro-C(12:0)-ceramide, D-erythro-C(14:0)-ceramides > D-erythro-C(24:0)-ceramide > D-erythro-C(6:0)-ceramide. Inhibits the maturation of protein glycosylation in the Golgi complex, including that of integrin beta-1 (ITGB1) and of LAMP1, by increasing the levels of sphingosine. Inhibits cell adhesion by reducing the level of ITGB1 in the cell surface. May have a role in cell proliferation and apoptosis that seems to depend on the balance between sphingosine and sphingosine-1-phosphate.
Gene Name:
ACER2
Uniprot ID:
Q5QJU3
Molecular weight:
31308.85
General function:
Involved in ceramidase activity
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 6.5-8.5. Acts as a key regulator of sphingolipid signaling metabolites by generating sphingosine at the cell surface. Acts as a repressor of apoptosis both by reducing C16-ceramide, thereby preventing ceramide-induced apoptosis, and generating sphingosine, a precursor of the antiapoptotic factor sphingosine 1-phosphate. Probably involved in the digestion of dietary sphingolipids in intestine by acting as a key enzyme for the catabolism of dietary sphingolipids and regulating the levels of bioactive sphingolipid metabolites in the intestinal tract.
Gene Name:
ASAH2
Uniprot ID:
Q9NR71
Molecular weight:
19024.55
General function:
Involved in catalytic activity
Specific function:
Non-lysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide. Involved in sphingomyelin generation and prevention of glycolipid accumulation. May also catalyze the hydrolysis of bile acid 3-O-glucosides, however, the relevance of such activity is unclear in vivo.
Gene Name:
GBA2
Uniprot ID:
Q9HCG7
Molecular weight:
104648.13
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Hydrolyzes the sphingolipid ceramide into sphingosine and free fatty acid at an optimal pH of 8.0. Has a highly restricted substrate specificity for the natural stereoisomer of ceramide with D-erythro-sphingosine but not D-ribo-phytosphingosine or D-erythro-dihydrosphingosine as a backbone. May have a role in regulating the levels of bioactive lipids ceramide and sphingosine 1-phosphate, as well as complex sphingolipids (By similarity).
Gene Name:
ACER1
Uniprot ID:
Q8TDN7
Molecular weight:
31095.165

Only showing the first 50 proteins. There are 66 proteins in total.