You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.

NOTICE: The ontology section is undergoing maintainance. If it is not visible on a metabocard page or does not include the expected information, please try again later! Thank you!

Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2009-07-25 00:12:05 UTC
Update Date2017-12-20 20:31:08 UTC
HMDB IDHMDB0013037
Secondary Accession Numbers
  • HMDB13037
Metabolite Identification
Common NamePentanoyl-CoA
DescriptionPentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine.
Structure
Thumb
Synonyms
ValueSource
Pentanoyl-coenzyme AHMDB
Chemical FormulaC26H44N7O17P3S
Average Molecular Weight851.651
Monoisotopic Molecular Weight851.172723243
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional Name[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[({hydroxy[hydroxy(3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy)phosphoryl]oxyphosphoryl}oxy)methyl]oxolan-3-yl]oxyphosphonic acid
CAS Registry NumberNot Available
SMILES
CCCCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1S/C26H44N7O17P3S/c1-4-5-6-17(35)54-10-9-28-16(34)7-8-29-24(38)21(37)26(2,3)12-47-53(44,45)50-52(42,43)46-11-15-20(49-51(39,40)41)19(36)25(48-15)33-14-32-18-22(27)30-13-31-23(18)33/h13-15,19-21,25,36-37H,4-12H2,1-3H3,(H,28,34)(H,29,38)(H,42,43)(H,44,45)(H2,27,30,31)(H2,39,40,41)/t15-,19-,20-,21?,25-/m1/s1
InChI KeyRXUATCUKICAIOA-TVCSPYKZSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as 2,3,4-saturated fatty acyl coas. These are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct Parent2,3,4-saturated fatty acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Beta amino acid or derivatives
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • N-acyl-amine
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Monosaccharide
  • Pyrimidine
  • Alkyl phosphate
  • Fatty amide
  • Phosphoric acid ester
  • Tetrahydrofuran
  • Imidazole
  • Azole
  • Heteroaromatic compound
  • Carbothioic s-ester
  • Secondary alcohol
  • Thiocarboxylic acid ester
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Sulfenyl compound
  • Thiocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Carboxylic acid derivative
  • Organosulfur compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic nitrogen compound
  • Primary amine
  • Organopnictogen compound
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Process

Naturally occurring process:

  Biological process:

    Biochemical pathway:

    Cellular process:

Disposition

Biological location:

  Cell and elements:

  Subcellular:

Source:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.67 g/LALOGPS
logP-0.09ALOGPS
logP-5.4ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 ŲChemAxon
Rotatable Bond Count23ChemAxon
Refractivity186.04 m³·mol⁻¹ChemAxon
Polarizability76.5 ųChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-2901000120-2a423c1bd81049be2f37View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-1913000000-a7882da7f4659358dd99View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1911000000-dd4d2426d295e6cea710View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-7930140450-c93bb9584e9108db8543View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-6910010000-390528f5d6ef7539cb68View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-5900100000-f9c4115d1b808c86f8f7View in MoNA
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue LocationNot Available
Pathways
NameSMPDB/PathwhizKEGG
Valproic Acid Metabolism PathwayPw000611Pw000611 greyscalePw000611 simpleNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB029262
KNApSAcK IDNot Available
Chemspider ID388465
KEGG Compound IDC00888
BioCyc ID5-HYDROXYPENTANOYL-COA
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound439337
PDB IDNot Available
ChEBI ID15536
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 112 proteins in total.

Enzymes

General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Abolishes BNIP3-mediated apoptosis and mitochondrial damage.
Gene Name:
ACAA2
Uniprot ID:
P42765
Molecular weight:
41923.82
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
ACAA1
Uniprot ID:
P09110
Molecular weight:
34664.46
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Not Available
Gene Name:
HADHB
Uniprot ID:
P55084
Molecular weight:
51293.955
General function:
Involved in oxidoreductase activity
Specific function:
Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA.
Gene Name:
ALDH6A1
Uniprot ID:
Q02252
Molecular weight:
57839.31
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADL
Uniprot ID:
P28330
Molecular weight:
47655.275
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
ACADS
Uniprot ID:
P16219
Molecular weight:
44296.705
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
This enzyme is specific for acyl chain lengths of 4 to 16.
Gene Name:
ACADM
Uniprot ID:
P11310
Molecular weight:
46587.98
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
Gene Name:
ACOX1
Uniprot ID:
Q15067
Molecular weight:
70135.205
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids.
Gene Name:
ACOX2
Uniprot ID:
Q99424
Molecular weight:
76826.14
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
IVD
Uniprot ID:
P26440
Molecular weight:
43055.325

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5

Only showing the first 10 proteins. There are 112 proteins in total.