You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2009-07-25 00:12:51 UTC
Update Date2016-02-11 01:25:40 UTC
HMDB IDHMDB13078
Secondary Accession NumbersNone
Metabolite Identification
Common NameStearoylethanolamide
DescriptionStearoylethanolamide is an N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337 , 12056855 , 12560208 , 11997249 ).
Structure
Thumb
Synonyms
ValueSource
N-StearoylethanolamideChEMBL
Stearic acid monoethanolamideHMDB
Stearoyl ethanolamideHMDB
Chemical FormulaC20H41NO2
Average Molecular Weight327.545
Monoisotopic Molecular Weight327.313729561
IUPAC NameN-(2-hydroxyethyl)octadecanamide
Traditional Namestearoyl-ethanolamine
CAS Registry Number111-57-9
SMILES
CCCCCCCCCCCCCCCCCC(=O)NCCO
InChI Identifier
InChI=1S/C20H41NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-20(23)21-18-19-22/h22H,2-19H2,1H3,(H,21,23)
InChI KeyInChIKey=OTGQIQQTPXJQRG-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as n-acylethanolamines. These are compounds containing an N-acyethanolamine moiety, which is characterized by an acyl group is linked to the nitrogen atom of ethanolamine.
KingdomOrganic compounds
Super ClassOrganonitrogen compounds
ClassAmines
Sub ClassAlkanolamines
Direct ParentN-acylethanolamines
Alternative Parents
Substituents
  • N-acylethanolamine
  • Fatty acyl
  • N-acyl-amine
  • Fatty amide
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
StatusDetected and Quantified
Origin
  • Endogenous
  • Food
Biofunction
  • Cell signaling
  • Fuel and energy storage
  • Fuel or energy source
  • Membrane integrity/stability
Application
  • Nutrients
  • Stabilizers
  • Surfactants and Emulsifiers
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point98.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.000354 mg/mLALOGPS
logP6.67ALOGPS
logP5.87ChemAxon
logS-6ALOGPS
pKa (Strongest Acidic)15.46ChemAxon
pKa (Strongest Basic)-0.33ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area49.33 Å2ChemAxon
Rotatable Bond Count18ChemAxon
Refractivity99.3 m3·mol-1ChemAxon
Polarizability44.34 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
Tissue LocationNot Available
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified15 +/- 11 uMAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDFDB029286
KNApSAcK IDNot Available
Chemspider ID25958
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB13078
Metagene LinkHMDB13078
METLIN IDNot Available
PubChem Compound27902
PDB IDNot Available
ChEBI ID386359
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Hofmann U, Domeier E, Frantz S, Laser M, Weckler B, Kuhlencordt P, Heuer S, Keweloh B, Ertl G, Bonz AW: Increased myocardial oxygen consumption by TNF-alpha is mediated by a sphingosine signaling pathway. Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2100-5. Epub 2003 Jan 30. [12560208 ]
  2. Tripathy S, Kleppinger-Sparace K, Dixon RA, Chapman KD: N-acylethanolamine signaling in tobacco is mediated by a membrane-associated, high-affinity binding protein. Plant Physiol. 2003 Apr;131(4):1781-91. [12692337 ]
  3. Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN: Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol. 2002 May;34(5):509-18. [12056855 ]
  4. Amadou A, Nawrocki A, Best-Belpomme M, Pavoine C, Pecker F: Arachidonic acid mediates dual effect of TNF-alpha on Ca2+ transients and contraction of adult rat cardiomyocytes. Am J Physiol Cell Physiol. 2002 Jun;282(6):C1339-47. [11997249 ]