Hmdb loader
Survey
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2010-02-22 10:49:53 UTC
Update Date2022-10-24 19:44:12 UTC
HMDB IDHMDB0013329
Secondary Accession Numbers
  • HMDB0062588
  • HMDB13329
  • HMDB62588
Metabolite Identification
Common Nametrans-2-Tetradecenoylcarnitine
Descriptiontrans-2-Tetradecenoylcarnitine is an acylcarnitine. More specifically, it is an trans-2-tetradecenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. trans-2-Tetradecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine trans-2-tetradecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748 ). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular trans-2-tetradecenoylcarnitine is elevated in the blood or plasma of individuals with very long-chain acyl-CoA dehydrogenase (VLACD) deficiency (PMID: 25843429 , PMID: 19327992 , PMID: 11433098 , PMID: 18670371 , PMID: 12828998 ), trifunctional protein (mitochondrial long-chain ketoacyl-coa thiolase) deficiency (PMID: 16423905 ), mitochondrial dysfunction in diabetes patients (PMID: 28726959 ), acadvl acyl-coa dehydrogenase very long chain deficiency (PMID: 29491033 ), nonalcoholic fatty liver disease (NAFLD) (PMID: 27211699 ), and insulin resistance type 2 diabetes (PMID: 24358186 ). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulin's inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774 ). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903 ). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ).
Structure
Data?1614294471
Synonyms
ValueSource
2-Tetradecenoyl carnitineHMDB
2E-TetradecenoylcarnitineHMDB
O-(2-Tetradecenoyl)carnitineHMDB
Tetradecenoyl-L-carnitineHMDB
trans-2-Tetradecenoyl-L-carnitineHMDB
(3R)-3-[(2E)-Tetradec-2-enoyloxy]-4-(trimethylazaniumyl)butanoic acidHMDB
trans-2-TetradecenoylcarnitineHMDB
Chemical FormulaC21H40NO4
Average Molecular Weight370.553
Monoisotopic Molecular Weight370.295185192
IUPAC Name(3R)-3-[(2E)-tetradec-2-enoyloxy]-4-(trimethylazaniumyl)butanoate
Traditional Name(3R)-3-[(2E)-tetradec-2-enoyloxy]-4-(trimethylammonio)butanoate
CAS Registry Number1256380-19-4
SMILES
CCCCCCCCCCC\C=C\C(=O)O[C@H](CC(O)=O)C[N+](C)(C)C
InChI Identifier
InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h15-16,19H,5-14,17-18H2,1-4H3/p+1/b16-15+/t19-/m1/s1
InChI KeyBUBHHSHBKWNLLG-CLHDZIPGSA-O
Chemical Taxonomy
Description Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentAcyl carnitines
Alternative Parents
Substituents
  • Acyl-carnitine
  • Dicarboxylic acid or derivatives
  • Tetraalkylammonium salt
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • Quaternary ammonium salt
  • Carboxylic acid salt
  • Carboxylic acid ester
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organic salt
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility1.4e-05 g/LALOGPS
logP0.54ALOGPS
logP1.38ChemAxon
logS-7.5ALOGPS
pKa (Strongest Acidic)4.17ChemAxon
pKa (Strongest Basic)-6.8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area66.43 ŲChemAxon
Rotatable Bond Count17ChemAxon
Refractivity128.97 m³·mol⁻¹ChemAxon
Polarizability45.25 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+205.37730932474
DeepCCS[M-H]-201.35830932474
DeepCCS[M-2H]-237.90130932474
DeepCCS[M+Na]+214.19230932474

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
trans-2-TetradecenoylcarnitineCCCCCCCCCCC\C=C\C(=O)O[C@H](CC(O)=O)C[N+](C)(C)C3867.8Standard polar33892256
trans-2-TetradecenoylcarnitineCCCCCCCCCCC\C=C\C(=O)O[C@H](CC(O)=O)C[N+](C)(C)C2381.7Standard non polar33892256
trans-2-TetradecenoylcarnitineCCCCCCCCCCC\C=C\C(=O)O[C@H](CC(O)=O)C[N+](C)(C)C2603.5Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
trans-2-Tetradecenoylcarnitine,1TMS,isomer #1CCCCCCCCCCC/C=C/C(=O)O[C@H](CC(=O)O[Si](C)(C)C)C[N+](C)(C)C2590.0Semi standard non polar33892256
trans-2-Tetradecenoylcarnitine,1TBDMS,isomer #1CCCCCCCCCCC/C=C/C(=O)O[C@H](CC(=O)O[Si](C)(C)C(C)(C)C)C[N+](C)(C)C2808.5Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - trans-2-Tetradecenoylcarnitine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - trans-2-Tetradecenoylcarnitine 10V, Positive-QTOFsplash10-00di-0009000000-1a5965dc435463ee085f2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - trans-2-Tetradecenoylcarnitine 20V, Positive-QTOFsplash10-0079-9005000000-84dcf946c3b41ee8ec832021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - trans-2-Tetradecenoylcarnitine 40V, Positive-QTOFsplash10-000i-9000000000-e9262cbaff8cb4ad0ba62021-09-22Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected and Quantified0.14 +/- 0.06 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
FecesDetected and Quantified0.15 +/- 0.11 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0.0-0.1 umol/mmol creatinineNewborn (0-30 days old)BothNormal details
UrineDetected and Quantified0.01(0.01-0.05) umol/mmol creatinineNewborn (0-30 days old)FemaleNormal details
UrineDetected and Quantified0.01(0.0-0.11) umol/mmol creatinineNewborn (0-30 days old)MaleNormal details
UrineDetected and Quantified0.003 (0.001-0.006) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.1014 (0.0757) uMAdult (>18 years old)FemalePregnancy with fetus having congenital heart defect details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID74849341
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53481699
PDB IDNot Available
ChEBI ID89716
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Shigematsu Y, Hirano S, Hata I, Tanaka Y, Sudo M, Tajima T, Sakura N, Yamaguchi S, Takayanagi M: Selective screening for fatty acid oxidation disorders by tandem mass spectrometry: difficulties in practical discrimination. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):63-72. [PubMed:12828998 ]
  2. Wood JC, Magera MJ, Rinaldo P, Seashore MR, Strauss AW, Friedman A: Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant's newborn screening card. Pediatrics. 2001 Jul;108(1):E19. [PubMed:11433098 ]
  3. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  4. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  5. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  6. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  7. FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
  8. Reuter SE, Evans AM: Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. doi: 10.1007/BF03261931. [PubMed:22804748 ]
  9. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009 Mar;58(3):550-8. doi: 10.2337/db08-1078. Epub 2008 Dec 10. [PubMed:19073774 ]
  10. Schooneman MG, Vaz FM, Houten SM, Soeters MR: Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013 Jan;62(1):1-8. doi: 10.2337/db12-0466. [PubMed:23258903 ]
  11. Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O'Connor CM, Shah SH, Kraus WE: Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J Am Coll Cardiol. 2016 Jan 26;67(3):291-9. doi: 10.1016/j.jacc.2015.10.079. [PubMed:26796394 ]
  12. Abu Bakar MH, Sarmidi MR: Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol Biosyst. 2017 Aug 22;13(9):1838-1853. doi: 10.1039/c7mb00333a. [PubMed:28726959 ]
  13. Hisahara S, Matsushita T, Furuyama H, Tajima G, Shigematsu Y, Imai T, Shimohama S: A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis. Tohoku J Exp Med. 2015 Apr;235(4):305-10. doi: 10.1620/tjem.235.305. [PubMed:25843429 ]
  14. Laforet P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I, Chabrol B, Chaigne D, Boespflug-Tanguy O, Laroche C, Bedat-Millet AL, Behin A, Delevaux I, Lombes A, Andresen BS, Eymard B, Vianey-Saban C: Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009 May;19(5):324-9. doi: 10.1016/j.nmd.2009.02.007. Epub 2009 Mar 26. [PubMed:19327992 ]
  15. Tajima G, Sakura N, Shirao K, Okada S, Tsumura M, Nishimura Y, Ono H, Hasegawa Y, Hata I, Naito E, Yamaguchi S, Shigematsu Y, Kobayashi M: Development of a new enzymatic diagnosis method for very-long-chain Acyl-CoA dehydrogenase deficiency by detecting 2-hexadecenoyl-CoA production and its application in tandem mass spectrometry-based selective screening and newborn screening in Japan. Pediatr Res. 2008 Dec;64(6):667-72. doi: 10.1203/PDR.0b013e318187cc44. [PubMed:18670371 ]
  16. Das AM, Illsinger S, Lucke T, Hartmann H, Ruiter JP, Steuerwald U, Waterham HR, Duran M, Wanders RJ: Isolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene. Clin Chem. 2006 Mar;52(3):530-4. doi: 10.1373/clinchem.2005.062000. Epub 2006 Jan 19. [PubMed:16423905 ]
  17. Lepori V, Muhlhause F, Sewell AC, Jagannathan V, Janzen N, Rosati M, Alves de Sousa FMM, Tschopp A, Schupbach G, Matiasek K, Tipold A, Leeb T, Kornberg M: A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy. G3 (Bethesda). 2018 May 4;8(5):1545-1554. doi: 10.1534/g3.118.200084. [PubMed:29491033 ]
  18. Chen Y, Li C, Liu L, Guo F, Li S, Huang L, Sun C, Feng R: Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry. Clin Biochem. 2016 Sep;49(13-14):962-6. doi: 10.1016/j.clinbiochem.2016.05.016. Epub 2016 May 20. [PubMed:27211699 ]
  19. Mai M, Tonjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB: Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013 Dec 16;8(12):e82459. doi: 10.1371/journal.pone.0082459. eCollection 2013. [PubMed:24358186 ]
  20. Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]
  21. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.