You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:00:11 UTC
Update Date2016-02-11 01:27:30 UTC
HMDB IDHMDB13845
Secondary Accession NumbersNone
Metabolite Identification
Common NameSR 49498
DescriptionSR 49498 is a metabolite of Irbesartan. Sr 49498 belongs to the family of Aromatic Homomonocyclic Compounds. These are aromatic compounds containig only one ring, which is homocyclic.
Structure
Thumb
SynonymsNot Available
Chemical FormulaC25H30N6O2
Average Molecular Weight446.5447
Monoisotopic Molecular Weight446.243024234
IUPAC Name1-pentanamido-N-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)cyclopentane-1-carboxamide
Traditional Name1-pentanamido-N-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)cyclopentane-1-carboxamide
CAS Registry NumberNot Available
SMILES
CCCCC(=O)NC1(CCCC1)C(=O)NCC1=CC=C(C=C1)C1=CC=CC=C1C1=NNN=N1
InChI Identifier
InChI=1S/C25H30N6O2/c1-2-3-10-22(32)27-25(15-6-7-16-25)24(33)26-17-18-11-13-19(14-12-18)20-8-4-5-9-21(20)23-28-30-31-29-23/h4-5,8-9,11-14H,2-3,6-7,10,15-17H2,1H3,(H,26,33)(H,27,32)(H,28,29,30,31)
InChI KeyInChIKey=PAKGYCNZUGIDHV-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as biphenyltetrazoles and derivatives. These are organic compounds containing a biphenyl attached to a tetrazole. A carbon atom of the biphenyl moiety is boned to a carbon or the nitrogen atom of the tetrazole moiety.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassAzoles
Sub ClassTetrazoles
Direct ParentBiphenyltetrazoles and derivatives
Alternative Parents
Substituents
  • Biphenyltetrazole
  • N-acyl-alpha amino acid or derivatives
  • Biphenyl
  • Phenylmethylamine
  • Benzylamine
  • Fatty acyl
  • Benzenoid
  • N-acyl-amine
  • Fatty amide
  • Monocyclic benzene moiety
  • Heteroaromatic compound
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Azacycle
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Ontology
StatusExpected but not Quantified
Origin
  • Drug metabolite
  • Endogenous
Biofunction
  • Waste products
Application
  • Pharmaceutical, waste
Cellular locations
  • Extracellular
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0079 mg/mLALOGPS
logP3.56ALOGPS
logP4.39ChemAxon
logS-4.8ALOGPS
pKa (Strongest Acidic)7.4ChemAxon
pKa (Strongest Basic)0.064ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area112.66 Å2ChemAxon
Rotatable Bond Count9ChemAxon
Refractivity139.56 m3·mol-1ChemAxon
Polarizability48.98 Å3ChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Biological Properties
Cellular Locations
  • Extracellular
Biofluid Locations
  • Blood
  • Urine
Tissue Location
  • Kidney
  • Liver
PathwaysNot Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry
  • Not Applicable
details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
DrugBank Metabolite IDDBMET00008
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
NuGOwiki LinkHMDB13845
Metagene LinkHMDB13845
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT1A3
Uniprot ID:
P35503
Molecular weight:
60337.835
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [19515014 ]
General function:
Involved in peroxidase activity
Specific function:
May play an important role in regulating or promoting cell proliferation in some normal and neoplastically transformed cells.
Gene Name:
PTGS1
Uniprot ID:
P23219
Molecular weight:
68685.82
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [19515014 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [19515014 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Walsky RL, Gaman EA, Obach RS: Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol. 2005 Jan;45(1):68-78. [15601807 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Transcription factor that recognizes and binds to the enhancer heptamer motif 5'-TGA[CG]TCA-3'
Gene Name:
JUN
Uniprot ID:
P05412
Molecular weight:
35675.3
References
  1. Zhu ZS, Wang JM, Chen SL: Mesenteric artery remodeling and effects of imidapril and irbesartan on it in spontaneously hypertensive rats. World J Gastroenterol. 2004 May 15;10(10):1471-5. [15133856 ]
  2. Cheng SM, Yang SP, Ho LJ, Tsao TP, Chang DM, Lai JH: Irbesartan inhibits human T-lymphocyte activation through downregulation of activator protein-1. Br J Pharmacol. 2004 Jul;142(6):933-42. Epub 2004 Jun 21. [15210574 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
Receptor for angiotensin II. Mediates its action by association with G proteins that activate a phosphatidylinositol- calcium second messenger system
Gene Name:
AGTR1
Uniprot ID:
P30556
Molecular weight:
41060.5
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
  2. Voigt JP, Bramlage P, Fink H: Hypophagic effect of the angiotensin AT1 receptor antagonist irbesartan in rats. Eur J Pharmacol. 2007 Jun 14;564(1-3):131-7. Epub 2007 Mar 3. [17408613 ]
  3. Waeber B, Burnier M: AT1-receptor antagonism in hypertension: what has been learned with irbesartan? Expert Rev Cardiovasc Ther. 2003 May;1(1):23-33. [15030294 ]
  4. Dol F, Martin G, Staels B, Mares AM, Cazaubon C, Nisato D, Bidouard JP, Janiak P, Schaeffer P, Herbert JM: Angiotensin AT1 receptor antagonist irbesartan decreases lesion size, chemokine expression, and macrophage accumulation in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol. 2001 Sep;38(3):395-405. [11486244 ]
  5. Martin G, Dol F, Mares AM, Berezowski V, Staels B, Hum DW, Schaeffer P, Herbert JM: Lesion progression in apoE-deficient mice: implication of chemokines and effect of the AT1 angiotensin II receptor antagonist irbesartan. J Cardiovasc Pharmacol. 2004 Feb;43(2):191-9. [14716205 ]
  6. van den Meiracker AH, Admiraal PJ, Janssen JA, Kroodsma JM, de Ronde WA, Boomsma F, Sissmann J, Blankestijn PJ, Mulder PG, Man In 't Veld AJ, et al.: Hemodynamic and biochemical effects of the AT1 receptor antagonist irbesartan in hypertension. Hypertension. 1995 Jan;25(1):22-9. [7843749 ]
  7. Carraway JW, Park S, McCune SA, Holycross BJ, Radin MJ: Comparison of irbesartan with captopril effects on cardiac hypertrophy and gene expression in heart failure-prone male SHHF/Mcc-fa(cp) rats. J Cardiovasc Pharmacol. 1999 Mar;33(3):451-60. [10069682 ]
  8. Hope S, Brecher P, Chobanian AV: Comparison of the effects of AT1 receptor blockade and angiotensin converting enzyme inhibition on atherosclerosis. Am J Hypertens. 1999 Jan;12(1 Pt 1):28-34. [10075381 ]
  9. Mazzolai L, Maillard M, Rossat J, Nussberger J, Brunner HR, Burnier M: Angiotensin II receptor blockade in normotensive subjects: A direct comparison of three AT1 receptor antagonists. Hypertension. 1999 Mar;33(3):850-5. [10082498 ]
  10. Morsing P, Adler G, Brandt-Eliasson U, Karp L, Ohlson K, Renberg L, Sjoquist PO, Abrahamsson T: Mechanistic differences of various AT1-receptor blockers in isolated vessels of different origin. Hypertension. 1999 Jun;33(6):1406-13. [10373224 ]
  11. Adams MA, Trudeau L: Irbesartan: review of pharmacology and comparative properties. Can J Clin Pharmacol. 2000 Spring;7(1):22-31. [10822210 ]
  12. Croom KF, Plosker GL: Irbesartan: a review of its use in hypertension and diabetic nephropathy. Drugs. 2008;68(11):1543-69. [18627212 ]
  13. Croom KF, Curran MP, Goa KL, Perry CM: Irbesartan: a review of its use in hypertension and in the management of diabetic nephropathy. Drugs. 2004;64(9):999-1028. [15101793 ]