You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:49 UTC
Update Date2016-02-11 01:28:30 UTC
HMDB IDHMDB14426
Secondary Accession NumbersNone
Metabolite Identification
Common NameLidocaine
DescriptionLidocaine is only found in individuals that have used or taken this drug. It is a local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of procaine but its duration of action is shorter than that of bupivacaine or prilocaine. [PubChem]Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. Lidocaine alters signal conduction in neurons by blocking the fast voltage gated sodium (Na+) channels in the neuronal cell membrane that are responsible for signal propagation. With sufficient blockage the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anaesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their birth in the first place.
Structure
Thumb
Synonyms
ValueSource
2-(diethylamino)-2',6'-AcetoxylidideChEBI
2-(diethylamino)-N-(2,6-Dimethylphenyl)acetamideChEBI
alpha-diethylamino-2,6-DimethylacetanilideChEBI
LidodermChEBI
a-diethylamino-2,6-DimethylacetanilideGenerator
α-diethylamino-2,6-dimethylacetanilideGenerator
DilocaineHMDB
L-CaineHMDB
Chemical FormulaC14H22N2O
Average Molecular Weight234.3373
Monoisotopic Molecular Weight234.173213336
IUPAC Name2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide
Traditional Namelidocaine
CAS Registry Number137-58-6
SMILES
CCN(CC)CC(=O)NC1=C(C)C=CC=C1C
InChI Identifier
InChI=1S/C14H22N2O/c1-5-16(6-2)10-13(17)15-14-11(3)8-7-9-12(14)4/h7-9H,5-6,10H2,1-4H3,(H,15,17)
InChI KeyInChIKey=NNJVILVZKWQKPM-UHFFFAOYSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as alpha amino acid amides. These are amide derivatives of alpha amino acids.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAlpha amino acid amides
Alternative Parents
Substituents
  • Alpha-amino acid amide
  • N-arylamide
  • Benzenoid
  • Monocyclic benzene moiety
  • Tertiary aliphatic amine
  • Tertiary amine
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Anesthetics
  • Anesthetics, Local
  • Anti-Arrhythmia Agents
  • Antiarrhythmic Agents
Application
  • Pharmaceutical
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point68.5 °CNot Available
Boiling Point181 °CNot Available
Water Solubility5.93e-01 g/LNot Available
LogP2.1Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.59 mg/mLALOGPS
logP1.81ALOGPS
logP2.84ChemAxon
logS-2.6ALOGPS
pKa (Strongest Acidic)13.78ChemAxon
pKa (Strongest Basic)7.75ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area32.34 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity73.93 m3·mol-1ChemAxon
Polarizability27.77 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
MSMass Spectrum (Electron Ionization)splash10-000i-9000000000-38a47958df650b972703View in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Lidocaine (Antiarrhythmic) PathwaySMP00328Not Available
Lidocaine (Local Anaesthetic) Metabolism PathwaySMP00620Not Available
Lidocaine (Local Anaesthetic) PathwaySMP00398Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00281
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00281
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-4 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-2 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00281
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID3548
KEGG Compound IDC07073
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkLidocaine
NuGOwiki LinkHMDB14426
Metagene LinkHMDB14426
METLIN IDNot Available
PubChem Compound3676
PDB IDLQZ
ChEBI ID6456
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Thomson PD, Melmon KL, Richardson JA, Cohn K, Steinbrunn W, Cudihee R, Rowland M: Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann Intern Med. 1973 Apr;78(4):499-508. [4694036 ]
  2. Khaliq W, Alam S, Puri N: Topical lidocaine for the treatment of postherpetic neuralgia. Cochrane Database Syst Rev. 2007 Apr 18;(2):CD004846. [17443559 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
  2. Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT: Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65. [10901707 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in transmembrane receptor protein tyrosine kinase activity
Specific function:
Isoform 2 may act as an antagonist of EGF action
Gene Name:
EGFR
Uniprot ID:
P00533
Molecular weight:
134276.2
References
  1. Sakaguchi M, Kuroda Y, Hirose M: The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth Analg. 2006 Apr;102(4):1103-7. [16551906 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP2C18
Uniprot ID:
P33260
Molecular weight:
55710.075
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Wang B, Zhou SF: Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218. [19754423 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
  3. Wang JS, Backman JT, Taavitsainen P, Neuvonen PJ, Kivisto KT: Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65. [10901707 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in ion channel activity
Specific function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential in the electrocardiogram
Gene Name:
SCN5A
Uniprot ID:
Q14524
Molecular weight:
226937.5
References
  1. Itoh H, Tsuji K, Sakaguchi T, Nagaoka I, Oka Y, Nakazawa Y, Yao T, Jo H, Ashihara T, Ito M, Horie M, Imoto K: A paradoxical effect of lidocaine for the N406S mutation of SCN5A associated with Brugada syndrome. Int J Cardiol. 2007 Oct 18;121(3):239-48. Epub 2007 Apr 18. [17445919 ]
  2. Fedida D, Orth PM, Hesketh JC, Ezrin AM: The role of late I and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1:S71-S78. [16686685 ]
  3. Wallace CH, Baczko I, Jones L, Fercho M, Light PE: Inhibition of cardiac voltage-gated sodium channels by grape polyphenols. Br J Pharmacol. 2006 Nov;149(6):657-65. Epub 2006 Oct 3. [17016511 ]
  4. Cerne A, Bergh C, Borg K, Ek I, Gejervall AL, Hillensjo T, Olofsson JI, Stener-Victorin E, Wood M, Westlander G: Pre-ovarian block versus paracervical block for oocyte retrieval. Hum Reprod. 2006 Nov;21(11):2916-21. Epub 2006 Jul 13. [16840798 ]
  5. Muroi Y, Chanda B: Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. J Gen Physiol. 2009 Jan;133(1):1-15. Epub 2008 Dec 15. [19088384 ]
  6. Karoly R, Lenkey N, Juhasz AO, Vizi ES, Mike A: Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study. PLoS Comput Biol. 2010 Jun 17;6(6):e1000818. [20585544 ]
General function:
Involved in ion channel activity
Specific function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain
Gene Name:
SCN9A
Uniprot ID:
Q15858
Molecular weight:
226340.1
References
  1. Sheets PL, Jackson JO 2nd, Waxman SG, Dib-Hajj SD, Cummins TR: A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol. 2007 Jun 15;581(Pt 3):1019-31. Epub 2007 Apr 12. [17430993 ]
  2. Muroi Y, Chanda B: Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. J Gen Physiol. 2009 Jan;133(1):1-15. Epub 2008 Dec 15. [19088384 ]
  3. Karoly R, Lenkey N, Juhasz AO, Vizi ES, Mike A: Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study. PLoS Comput Biol. 2010 Jun 17;6(6):e1000818. [20585544 ]
General function:
Involved in ion channel activity
Specific function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Its electrophysiological properties vary depending on the type of the associated beta subunits (in vitro). Plays a role in neuropathic pain mechanisms
Gene Name:
SCN10A
Uniprot ID:
Q9Y5Y9
Molecular weight:
220623.6
References
  1. Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, Baker MD, Abrahamsen B, Wood JN, Adams DJ, Christie MJ, Lewis RJ: muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17030-5. Epub 2006 Oct 31. [17077153 ]
  2. Muroi Y, Chanda B: Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. J Gen Physiol. 2009 Jan;133(1):1-15. Epub 2008 Dec 15. [19088384 ]
  3. Karoly R, Lenkey N, Juhasz AO, Vizi ES, Mike A: Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study. PLoS Comput Biol. 2010 Jun 17;6(6):e1000818. [20585544 ]

Transporters

General function:
Involved in ion transmembrane transporter activity
Specific function:
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Also relative uptake activity ratio of carnitine to TEA is 11.3
Gene Name:
SLC22A5
Uniprot ID:
O76082
Molecular weight:
62751.1
References
  1. Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A: Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001 Feb;59(2):358-66. [11160873 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Wang E, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW: Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol. 2001 Dec;14(12):1596-603. [11743742 ]
  2. Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9. [14985103 ]