You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version3.6
Creation Date2012-09-06 15:16:51 UTC
Update Date2016-02-11 01:31:13 UTC
HMDB IDHMDB15043
Secondary Accession NumbersNone
Metabolite Identification
Common NameCocaine
DescriptionAn alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. [PubChem]
Structure
Thumb
Synonyms
ValueSource
(-)-CocaineChEBI
2-Methyl-3beta-hydroxy-1alphah,5alphah-tropane-2beta-carboxylate benzoate (ester)ChEBI
[1R-(exo,exo)]-3-(Benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid, methyl esterChEBI
BenzoylmethylecgonineChEBI
beta-CocainChEBI
CocainChEBI
CocainaChEBI
CocainumChEBI
KokainChEBI
L-CocainChEBI
L-CocaineChEBI
Methyl [1R-(exo,exo)]-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylateChEBI
Methyl benzoylecgonineChEBI
NeurocaineChEBI
2-Methyl-3b-hydroxy-1alphah,5alphah-tropane-2b-carboxylate benzoate (ester)Generator
2-Methyl-3b-hydroxy-1alphah,5alphah-tropane-2b-carboxylic acid benzoic acid (ester)Generator
2-Methyl-3beta-hydroxy-1alphah,5alphah-tropane-2beta-carboxylic acid benzoic acid (ester)Generator
2-Methyl-3β-hydroxy-1alphah,5alphah-tropane-2β-carboxylate benzoate (ester)Generator
2-Methyl-3β-hydroxy-1alphah,5alphah-tropane-2β-carboxylic acid benzoic acid (ester)Generator
(−)-cocaineHMDB
Chemical FormulaC17H21NO4
Average Molecular Weight303.3529
Monoisotopic Molecular Weight303.147058165
IUPAC Namemethyl (1R,2R,3S,5S)-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
Traditional Namecocaine
CAS Registry Number50-36-2
SMILES
[H][C@]12CC[C@]([H])([C@H]([C@H](C1)OC(=O)C1=CC=CC=C1)C(=O)OC)N2C
InChI Identifier
InChI=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1
InChI KeyInChIKey=ZPUCINDJVBIVPJ-LJISPDSOSA-N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassBenzoic acids and derivatives
Direct ParentBenzoic acid esters
Alternative Parents
Substituents
  • Benzoate ester
  • Tropane alkaloid
  • Piperidinecarboxylic acid
  • Benzylether
  • Benzoyl
  • N-alkylpyrrolidine
  • Piperidine
  • Dicarboxylic acid or derivatives
  • Methyl ester
  • Pyrrolidine
  • Tertiary aliphatic amine
  • Tertiary amine
  • Carboxylic acid ester
  • Azacycle
  • Organoheterocyclic compound
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
StatusExpected but not Quantified
Origin
  • Drug
Biofunction
  • Anesthetics
  • Anesthetics, Local
  • Dopamine Uptake Inhibitors
  • Local Anesthetics
  • Vasoconstrictor Agents
Application
  • Pharmaceutical
Cellular locations
  • Extracellular
  • Membrane
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point195 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility5.03e+00 g/LNot Available
LogP2.3Not Available
Predicted Properties
PropertyValueSource
Water Solubility5.03 mg/mLALOGPS
logP1.97ALOGPS
logP2.28ChemAxon
logS-1.8ALOGPS
pKa (Strongest Basic)8.85ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area55.84 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity81.16 m3·mol-1ChemAxon
Polarizability32.36 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biofluid Locations
  • Blood
  • Urine
Tissue LocationNot Available
Pathways
NameSMPDB LinkKEGG Link
Cocaine PathwaySMP00395Not Available
Normal Concentrations
BiofluidStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00907
  • Not Applicable
details
UrineExpected but not QuantifiedNot ApplicableNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00907
  • Not Applicable
details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiofluidValueOriginal ageOriginal sexOriginal conditionComments
Blood0-3 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0-2 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00907
DrugBank Metabolite IDNot Available
Phenol Explorer Compound IDNot Available
Phenol Explorer Metabolite IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID10194104
KEGG Compound IDC01416
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkCocaine
NuGOwiki LinkHMDB15043
Metagene LinkHMDB15043
METLIN IDNot Available
PubChem Compound446220
PDB IDCOC
ChEBI ID27958
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Siegel RK, Elsohly MA, Plowman T, Rury PM, Jones RT: Cocaine in herbal tea. JAMA. 1986 Jan 3;255(1):40. [3940302 ]
  2. Volkow ND, Wang GJ, Fischman MW, Foltin R, Fowler JS, Franceschi D, Franceschi M, Logan J, Gatley SJ, Wong C, Ding YS, Hitzemann R, Pappas N: Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci. 2000 Aug 11;67(12):1507-15. [10983846 ]
  3. Uz T, Akhisaroglu M, Ahmed R, Manev H: The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology. 2003 Dec;28(12):2117-23. [12865893 ]
  4. Dimitrijevic N, Dzitoyeva S, Manev H: An automated assay of the behavioral effects of cocaine injections in adult Drosophila. J Neurosci Methods. 2004 Aug 30;137(2):181-4. [15262059 ]
  5. McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, Nestler EJ: Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9377-81. Epub 2005 Jun 20. [15967985 ]

Enzymes

General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular weight:
62520.62
Reactions
Cocaine + Water → Ecgonine methyl ester + Benzoic aciddetails
General function:
Lipid transport and metabolism
Specific function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine.
Gene Name:
CES2
Uniprot ID:
O00748
Molecular weight:
68898.39
Reactions
Cocaine + Water → Ecgonine methyl ester + Benzoic aciddetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Ladona MG, Gonzalez ML, Rane A, Peter RM, de la Torre R: Cocaine metabolism in human fetal and adult liver microsomes is related to cytochrome P450 3A expression. Life Sci. 2000 Dec 15;68(4):431-43. [11205892 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. Epub 2009 Nov 24. [19934256 ]
General function:
Involved in neurotransmitter:sodium symporter activity
Specific function:
Amine transporter. Terminates the action of dopamine by its high affinity sodium-dependent reuptake into presynaptic terminals.
Gene Name:
SLC6A3
Uniprot ID:
Q01959
Molecular weight:
68494.255
References
  1. Wilson JM, Levey AI, Bergeron C, Kalasinsky K, Ang L, Peretti F, Adams VI, Smialek J, Anderson WR, Shannak K, Deck J, Niznik HB, Kish SJ: Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Ann Neurol. 1996 Sep;40(3):428-39. [8797532 ]
  2. Kim DI, Schweri MM, Deutsch HM: Synthesis and pharmacology of site specific cocaine abuse treatment agents: 8-substituted isotropane (3-azabicyclo[3.2.1]octane) dopamine uptake inhibitors. J Med Chem. 2003 Apr 10;46(8):1456-64. [12672245 ]
  3. Rothman RB, Baumann MH, Dersch CM, Appel J, Houghten RA: Discovery of novel peptidic dopamine transporter ligands by screening a positional scanning combinatorial hexapeptide library. Synapse. 1999 Sep 1;33(3):239-46. [10420171 ]
  4. Carrera MR, Meijler MM, Janda KD: Cocaine pharmacology and current pharmacotherapies for its abuse. Bioorg Med Chem. 2004 Oct 1;12(19):5019-30. [15351386 ]
  5. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [9537821 ]
General function:
Involved in ion channel activity
Specific function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential in the electrocardiogram
Gene Name:
SCN5A
Uniprot ID:
Q14524
Molecular weight:
226937.5
References
  1. Antzelevitch C: Brugada syndrome. Pacing Clin Electrophysiol. 2006 Oct;29(10):1130-59. [17038146 ]
  2. Satish OS, Yeh KH, Wen MS: Brugada syndrome--an update. Chang Gung Med J. 2005 Feb;28(2):69-76. [15880981 ]
  3. Wright SN, Wang SY, Xiao YF, Wang GK: State-dependent cocaine block of sodium channel isoforms, chimeras, and channels coexpressed with the beta1 subunit. Biophys J. 1999 Jan;76(1 Pt 1):233-45. [9876137 ]
General function:
Involved in ion channel activity
Specific function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Its electrophysiological properties vary depending on the type of the associated beta subunits (in vitro). Plays a role in neuropathic pain mechanisms
Gene Name:
SCN10A
Uniprot ID:
Q9Y5Y9
Molecular weight:
220623.6
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General function:
Involved in ion channel activity
Specific function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization
Gene Name:
SCN11A
Uniprot ID:
Q9UI33
Molecular weight:
204919.7
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
Gene Name:
CHRM1
Uniprot ID:
P11229
Molecular weight:
51420.4
References
  1. Carrera MR, Meijler MM, Janda KD: Cocaine pharmacology and current pharmacotherapies for its abuse. Bioorg Med Chem. 2004 Oct 1;12(19):5019-30. [15351386 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition
Gene Name:
CHRM2
Uniprot ID:
P08172
Molecular weight:
51714.6
References
  1. Carrera MR, Meijler MM, Janda KD: Cocaine pharmacology and current pharmacotherapies for its abuse. Bioorg Med Chem. 2004 Oct 1;12(19):5019-30. [15351386 ]
  2. Sharkey J, Ritz MC, Schenden JA, Hanson RC, Kuhar MJ: Cocaine inhibits muscarinic cholinergic receptors in heart and brain. J Pharmacol Exp Ther. 1988 Sep;246(3):1048-52. [3047364 ]

Transporters

General function:
Involved in neurotransmitter:sodium symporter activity
Specific function:
Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals.
Gene Name:
SLC6A2
Uniprot ID:
P23975
Molecular weight:
69331.42
References
  1. Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD: Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol. 1995 Oct;198(Pt 10):2197-212. [7500004 ]
  2. Burchett SA, Bannon MJ: Serotonin, dopamine and norepinephrine transporter mRNAs: heterogeneity of distribution and response to 'binge' cocaine administration. Brain Res Mol Brain Res. 1997 Oct 3;49(1-2):95-102. [9387868 ]
  3. Zhao Y, Sun L: Perinatal cocaine exposure reduces myocardial norepinephrine transporter function in the neonatal rat. Neurotoxicol Teratol. 2004 May-Jun;26(3):443-50. [15113605 ]
  4. Carrera MR, Meijler MM, Janda KD: Cocaine pharmacology and current pharmacotherapies for its abuse. Bioorg Med Chem. 2004 Oct 1;12(19):5019-30. [15351386 ]
General function:
Involved in neurotransmitter:sodium symporter activity
Specific function:
Serotonin transporter whose primary function in the central nervous system involves the regulation of serotonergic signaling via transport of serotonin molecules from the synaptic cleft back into the pre-synaptic terminal for re-utilization. Plays a key role in mediating regulation of the availability of serotonin to other receptors of serotonergic systems. Terminates the action of serotonin and recycles it in a sodium-dependent manner.
Gene Name:
SLC6A4
Uniprot ID:
P31645
Molecular weight:
70324.165
References
  1. Patkar AA, Berrettini WH, Hoehe M, Thornton CC, Gottheil E, Hill K, Weinstein SP: Serotonin transporter polymorphisms and measures of impulsivity, aggression, and sensation seeking among African-American cocaine-dependent individuals. Psychiatry Res. 2002 Jun 1;110(2):103-15. [12057823 ]
  2. Barker EL, Moore KR, Rakhshan F, Blakely RD: Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci. 1999 Jun 15;19(12):4705-17. [10366604 ]
  3. Corey JL, Quick MW, Davidson N, Lester HA, Guastella J: A cocaine-sensitive Drosophila serotonin transporter: cloning, expression, and electrophysiological characterization. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1188-92. [8302852 ]
  4. Carrera MR, Meijler MM, Janda KD: Cocaine pharmacology and current pharmacotherapies for its abuse. Bioorg Med Chem. 2004 Oct 1;12(19):5019-30. [15351386 ]
  5. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [9537821 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Grundemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermuller N, Schomig E: Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998 Nov 20;273(47):30915-20. [9812985 ]